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I am an experimental mathematician working mainly in number theory, also intersecting with combina-
torics, probability, and differential geometry. Computer software, programming languages, especially certain
algorithms play an essential role in my research, by providing calculations, simulations, visualizations, and etc.,
for empirical evidence of conjectures. Primarily applying probabilistic and symbolic methods, I focus on certain
numbers, sequences, polynomials, special functions, combinatorial identities, geometric structures, algorithms, and
their properties that computer algorithms can (in-)directly guide or help to prove.

In the next sections, I will briefly describe current and future projects.

1 Probabilistic Approach
Large portion of my research topics, methods, and background involve probability: either by probabilistic approach,
or some direct results in probability.

1.1 The Bernoulli and Euler Symbol
For all the special functions and polynomials that are either important, or have deep connections with other fields
of mathematics, Bernoulli and Euler polynomials (e.g., [10, Chpt. 24]) are among my favorite ones. Some
early results are summarized in the second part of my Ph. D thesis [Jiu16]. The main tools here are the Bernoulli
and Euler symbols, denoted by B and E , respectively. Each of the two symbols satisfies a simple evaluation rule:
Bn = Bn and En = En/2, where Bn and En are Bernoulli and Euler numbers. Originally, both B and E arise from
the traditional umbral calculus (see, e.g., [12]). Meanwhile, the probabilistic interpretations (See, e.g., [4, Thm. 2.3]
and [JMV14, Prop. 2.1]) view both symbols as random variables:

B = iLB − 1/2 and E = iLE − 1/2, (1)

where i2 = −1, and two random variables LB and LE have density functions pB and pE , respectively, as follows.

pB(t) := πsech2(πt)/2 and pE(t) := sech(πt). (2)

Note that, (1) implies the evaluation rules are exactly calculating the expectation. This probabilistic setup not only
provides a rigorous background, also largely extends the application of symbolic computations.

1.1.1 Extensions

As random variables, we can consider the sum of independent and identically distributed (i.i.d.) sequence

B(p) := B1 + · · ·+ Bp and E(p) := E1 + · · ·+ Ep,

where Bi ∼ B and similarly, Ei ∼ E . Then, extensions on higher-order polynomials and Bernoulli-Barnes polynomials
also admit symbolic expressions, which do not appear in traditional umbral calculus.
• Bernoulli and Euler polynomials of order p, B(p)

n (x) and E
(p)
n (x), are given by

B(p)
n (x) = E

[(
x+ B(p)

)n]
and E(p)

n (x) = E
[(

x+ E(p)
)n]

; (3)

• and Bernoulli-Barnes polynomials Bn(a;x), with a = (a1, . . . , ak) and al ̸= 0 can be expressed as

Bn(a;x) = E
[
(x+ a1B1 + · · ·+ akBk)

n

a1a2 · · · ak

]
, (4)

where B = (B1, . . . ,Bk) and a ·B =
∑k

l=1 alBl.
Results based on symbolic expressions extends traditional ones. For instance, In [JMV16, Thm. 2.2], we extended
a difference formula by Bayad and Beck [2, Thm. 5.1], symbolically, that for any polynomial P ,

P (x− a ·B) =

n∑
j=0

∑
|J|=j

|a|J∗ P
(n−j)(x+ (a ·B)J),

where J ⊂ [n] := {1, . . . , n} and J∗ = [n]\J .
While in [JMV14], not only did we apply the random variable interpretation to establish and prove identities, an

expected observation (see [JMV14, Note 4.8]) triggers more probabilistic models involving objects in combinatorics
and number theory, especially for finding and proving identities involving Bernoulli and Euler polynomials with
their higher-order extensions. This will be stated in Subsection 1.2.1.
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1.1.2 Orthogonal polynomials, Hankel determinants, and continued fractions

Admittedly, one does not need the probabilistic background, e.g., random variable, probability measure, moments,
etc., to study orthogonal polynomials, Hankel determinants, continued fractions, weighted lattice path, generalized
Motzkin number, and other related topics. Comprehensive introduction on basics and facts can be found, e.g., in
[5, 7]. Personally, it IS the random variable interpretation of E(p)

n (x), Euler polynomials of higher-order defined in
(3), leading me to study the corresponding orthogonal polynomials, denoted by Ω

(p)
n (y). In [JS19b], we recognize

that Ω
(p)
n (y) = inn!P

(p/2)
n

(
−i

(
y − x+ p

2

)
; π
2

)
/2n, as the Meixner-Pollaczek polynomial P (λ)

n (y;ϕ) (; see also [8,
eq. 9.7.1]). Similarly, let ϱn(y) be the the monic orthogonal polynomials with respect to the Bernoulli polynomial
Bn(x), then we identify that ϱn(y) = n!pn

(
y; 1

2 ,
1
2 ,

1
2 ,

1
2

)
/(n + 1)n, where pn(y; a, b, c, d) is the continuous Hahn

polynomial [8, pp. 200–202]. This work opens the door for me to continue on Hankel determinants, especially of
sequences related to Bernoulli and Euler polynomials, due to the following two reasons.
1. The classical formula for calculating the monic orthogonal polynomials of a given sequence contains the Hankel

determinants (, see, e.g., [7, Eq. 2.1.6]);
2. Lemma 1 in [JS19b] actually provides an alternative proof, in the aspect of random variables and orthogonal

polynomials, that Hankel determinants are invariant under binomial transforms [9, Item 445]. More precisely,
the sequence cn and its binomial transformed polynomial cn(x) :=

∑n
k=0

(
n
k

)
ckx

n−k share the same Hankel
determinants.

Therefore, in recent years, I accomplished a series studies on Hankel determinants [DJ21, DJ22, DJ23, CJ24, JL24,
CJLW], involving mainly Bernoulli and Euler polynomials, with their extensions, in, e.g., Dirichlet characters and
q-analogues. Besides major computations of new and important Hankel determinants, other highlights include the
following.
• An incomplete table of Hankel determinant identities for numerous sequences containing Bernoulli and Euler

numbers and polynomials was collected at the end of [DJ22].
• New general formulas of Hankel determinants of right-shifted sequence [DJ23, Lem. 2.5] and derivatives of Apell

sequence [DJ22, Thm. 5.1] are proven.
• The Hankel determinants we studied in [JL24] originally comes from statistically estimating the variance in

nonparametric regression. Also the symbolic computation, or more precisely WZ method, was used and applied
in the proofs.

• In the latest work [CJLW], we study the q-binomial transform sequence and its Hankel determinants, with partial
result on the degree of polynomials and the leading coefficients. And some proofs make fully use of the Bernoulli
and Euler symbols in (1).

1.2 Probabilistic Models
In [JMV14], based on the probabilistic interpretation, we obtained, for any positive integer N ,

En(x) =
1

Nn

∞∑
l=N

p
(N)
l E(l)

n

(
l −N

2
+Nx

)
,

where the coefficients p(N)
l appear in the series expansion of the reciprocal of the Nth Chebychev polynomial of the

first kind TN ; while p
(N)
ℓ can also be viewed as transition probabilities in the context of a random walk over a finite

number of sites [JMV14, Note 4.8], based on which, we continued to explore more of such probabilistic models.

1.2.1 Random walk, Brownian motion, and Bessel process

We consider both 1-dimensional reflected Brownian motion and 3-dimemsional Bessel process. More specifically,
we decompose the hitting times for consecutive level sites. For instance, considering in the figure below: starting
from site a0, the hitting time to the site am+1 can be decomposed, combinatorially, by the hitting times among
sites a0, a1, . . . , am in between, where the back and forth walks between neighboring sites form loops, denoted by
L1, L2, . . . , Lm.
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Figure 1: Loop Decomposition

With the combinatorial loop and hitting time decomposition, we can further derive non-trivial identities, involving
B

(p)
n (x) and E

(p)
n (x). In the early work [JV19], results on only 1 or 2 loops, i.e. m = 1 or 2 in Figure 1, were

obtained. Later in [JSY22], we successfully extended to the general n loops, by both induction and a combinatorial
interpretation. Further identities are derived from equally distributed level sites. For instance, the 3-loop cases in
3-dim Bessel process implies

Bn+1

(
x+ 2

5

)
−Bn+1

(x
5

)
=

n+ 1

5n

∞∑
k=0

3k

22k+3

k∑
ℓ=0

(
k

ℓ

)
(−1)ℓ

1

12ℓ
E(2k+2ℓ+3)

n (k + ℓ+ x).

1.2.2 Shuffling model

The very recent work [CJS25] studies the uniform shuffling on n cards, i.e., each result has probability 1/n!. Then,
merge the maximal consecutive integer subsequences and reduce the number of cards into the current remaining
one. The model was introduced by Rao et al. [11] to model the number of times that catalysts must be added
to n molecules to bond into a single lump. The molecules have a given hierarchical order which led to the above
mathematical formulation of the process. They studied the number of permutations needed for the process to end,
Xn; and obtained the asymptotic behavior of the mean as

n ≤ E[Xn] ≤ n+
√
n ⇒ E[Xn] ∼ n.

Our work [CJS25] not only improved it by

E[Xn] = n+

(
1 +

1

2
+ · · · 1

n− 1

)
+ εn, with 0 ≤ εn − εn+1 ≤ 1

n2
, (5)

which also indicates that εn has a limit. More importantly, the simulation in [11], for X2, . . . , X100 hinted that the
asymptotic distribution of Xn would tend to be normal. While, we completely solve it in the affirmative, i.e., we
proved that

Xn − n√
n

w→ N (0, 1),

by estimating all the central moments of Xn. As a by product, certain limits related to the sequence involve the
Bell numbers.

1.3 Differential and Information Geometry
I studied differential and information geometry for my master’s degree, which can be seen from some of my early
work, e.g., [WJ06, JS07, PSJ07, ZSJP13, ZSJP14, LZJS16] and a recent book [SPC+25]. Switching to studying
experimental mathematics in my Ph. D program does not prevent me from continuing my research in information
geometry; in fact, I am gradually combining some work together.
• In both [TJKZ20] and [JK20], the Wishart distribution plays the essential rule, in defining the zonal polynomials

and hence hypergeometric functions with matrix arguments. Alternatively, an equivalent definition of the zonal
polynomials is the eigenfunction of the Laplace–Beltrami operator on the space of symmetric, positive definite
matrices.

• I contributed to an awarded joint grant “Wuhan University—Duke Kunshan University—University of Minnesota,
Twin Cities Joint Research Platform”, together with my colleague Dr. Dongmian Zou.

• In the recent work [JP25], we use the information geometry tools to study the exponential generalized beta of
the second kind (EGB2) distribution or the beta-logistic distribution, with density function

f (x;β1, β2) =
1

B (β1, β2)
· exp (β1x)

(1 + exp(x))β1+β2
,
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where β1, β2 > 0 and B(x, y) is the beta function. With some simplification, it is not hard to recognize that
this family include both densities for Bernoulli and Euler symbols (2). Besides basic geometric structures, we
also uncovers that the beta-logistic distribution admits an α-parallel prior for any real number α, that has the
potential for application in geometric statistical inference.

1.4 Miscellaneous
There are also some work, inspired by probabilistic interpretations. For example,
• in [JS19a], we obtained a matrix representation of multiplicative nested sums, a special case of which is the

stochastic transition matrix of a random walk on a finite number of sites;
• and in [JS22], some identities are obtained, based on the moments-cumulants relation, by applying Faà di Bruno’s

formula.

2 Symbolic Approach
In general, computer or machine proofs, as the major aim in symbolic computation, always contribute to mathe-
matical proofs. For example, the WZ-method is applied in the proofs of [DJMV, JK20, JL24]. Meanwhile, Bernoulli
and Euler symbols, mentioned above, can also be considered as generalized symbolic computation method.

2.1 Multiple zeta value at non-positive integers
The multiple zeta function

ζr(n1, . . . , nr) =
∑

k1,...,kr>0

1

kn1
1 (k1 + k2)n2 · · · (k1 + · · ·+ kr)nr

has more than one analytic continuations at non-positive integers. For instance, Sadaoui [13, Thm. 1] used the
Raabe’s identity while Akiyama and Yanigawa [1, p. 350] considered the Euler-Maclaurin summation formula.
Since both results involve Bernoulli number, applying Bernoulli symbol reveals, to our surprise, that both analytic
continuations coincide. More precisely, for non-negative integers n1, . . . , nk, we have, symbolically,

ζr(−n1, . . . ,−nr) =

r∏
k=1

(−1)nkCnk+1
1,...,k (6)

where Cn
1 = Bn

1 /n and recursively, C1,...,k+1 = (C1,...,k + Bk+1)
n/n. This shows the two approaches, by Raabe’s

identity and Euler-Maclaurin summation formula that lead to analytic continuations of MZVs, coincide on non-
positive integer values. Other results such as recurrence [JMV18, Thm. 3.1], contiguity identities [JMV18, Thm. 4.1],
and generating functions [JMV18, Thm. 5.1] follow naturally from (6).

Also in [JVW20], we further symbolically expressed the r-fold harmonic sums at negative indices, which is
similar to the multiple zeta value expression. For example [JVW20, Thm. 3.1], by defining the H symbol as

(H(N))n = H−n(N) = 1n + 2n + · · ·+ (N − 1)n,

the r-fold multiple power sums can be expressed as

H−n1,...,−nr
(N) :=

∑
N>i1>···>ir>0

in1
1 · · · inr

r =

r∏
k=1

Hnk

1,...,k,

where H1 = H(N) and recursively H1,...k = H (H1,...,k−1) for k = 2, 3, . . . , r. This is compatible with (6) by letting
N → ∞.

2.2 The method of brackets
The method of bracket is an efficient method for the evaluation of a large class of definite integrals on the half-line,
i.e., ∫ ∞

0

f(x)dx,
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with only 6 simple rules, and applications to evaluate certain Feymann integrals, which arise from Feynman di-
agrams. In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions
describing the behavior and interaction of subatomic particles. It is also related to Dr. Moll, my Ph. D supervisor’s
long term project in proving all entries of [6]. Some other work of this project include [ADG+16a]

Some early work and summary can be found in the first half of my Ph. D thesis [Jiu16]. Further generalization,
novel evaluation techniques, and related discussion can be found, e.g., in [GJM16, GKJM17, GKJM18, GKJM20,
BGJ+23]. For instance, in [GJM16], we first observed several examples, all missing a common factor of 2. This is
due to the analytic continuation of the Pochhammer symbol (a)k = Γ(a+ k)/Γ(a), when both a and k are negative
integers. In order to get the correct answer, the evaluation

(−km)−m =
k

k + 1

(−1)m(km)!

((k + 1)m)!
,

should be applied.

2.3 Zonal polynomials
Besides applying symbolic algorithms for proofs, it is also important to implement certain algorithms for calculation.
In [JK20], a SageMath package1 was built to compute zonal polynomials Cλ(x1, . . . , xm) for any given integer
partition λ. Based on computational results, some patterns are observed and proven. An independent Mathematica
package2 is built by my coauthor, Dr. Christoph Koutschan.

2.4 Lattice Green functions
In the very recent work [CCJ24], we applied the holonomic function package to study multi-headed lattices, prop-
erties of the corresponding Green functions, and the Pólya numbers. Three missing cases in dimension ≤ 5 were
completed.

3 Remarks and some future plans
Here are some potential future research topics and plans, including both continuation of early work, and few
completely new areas, with natural motivation.
1. A long-term project focuses on mutual connections among orthogonal polynomials, lattice paths, continued

fractions and Hankel determinants; while current short-term aims at
• algorithms in computing operations of continued fraction expressions;
• labeled tree generating polynomials;
• and Hankel determinant guessing and computing, in general.

2. My second concentration will continue to work on the random variable expressions and models in probability.
• For instance, instead of only Bernoulli and Euler polynomials, the entire family of Sheffer sequences may be

taken into consideration.
• Some recent results, e.g., in [3], Budd studied the square lattice random walk related to Elliptic functions,

can be a good start as a new model to explore new identities.
• Those lattice and corresponding tree structures are also related to certain polynomials, especially with labeled

trees.
• Also, to continue the project on the shuffling model, we are now working on finding and proving the limit of
εn in (5). And more general but similar shuffling models are also of our interests.

3. I would also involve more computational number theory research.
• For example, continuing from the matrix representations of Bernoulli and Euler polynomials [JS19b], including

some of their extensions to higher-order, we can consider other matrix representations of classic and new
sequences of numbers, polynomials are of important interests.

• Some q-identities, which have computational applications, either faster convergence, or more digits per term
for computing certain constants, are also part of my future plans.

4. Finally, one important area is the normal numbers, which also admit probabilistic background. I will gradually
study related topics, in theory, computations, constructions, and hopefully proofs.

1https://jiulin90.github.io/Packages/BNE.sage
2https://jiulin90.github.io/Packages/Zonal.sage
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Please find the publication list below, including some other work that does not fit into my major research projects.
Among them, some are also suitable for undergraduate students, e.g., [BJMV14, JV16, JS22, JW].

List of Publications (Including Submitted Ones)
[ADG+14] Tewodros Amdeberhan, Atul Dixit, Xiao Guan, Lin Jiu, and Victor H. Moll, The unimodality of

a polynomial coming from a rational integral. Back to the original proof, Journal of Mathematical
Analysis and Applications 420 (2014), no. 5, 1154–1166.

[ADG+16a] Tewodros Amdeberhan, Atul Dixit, Xiao Guan, Lin Jiu, Alexey Kuznetsov, Victor H. Moll, and
Christophe Vignat, The integrals in Gradshteyn and Ryzhik. Part 30: trigonometric functions, Scientia
Series A: Mathematical Sciences 27 (2016), 47–74.

[ADG+16b] Tewodros Amdeberhan, Atul Dixit, Xiao Guan, Lin Jiu, Victor H. Moll, and Christophe Vignat, A
series involving Catalan numbers. Proofs and demonstrations, Elemente der Mathematik 71 (2016),
no. 3, 109–121.

[BGJ+23] Zachary Bradshaw, Ivan Gonzalez, Lin Jiu, Victor H. Moll, and Christophe Vignat, Compatibility of
the method of brackets with classical integration rules, Open Mathematics 21 (2023), no. 1, Article
20220581.

[BJMV14] Alyssa Byrnes, Lin Jiu, Victor H. Moll, and Christophe Vignat, Recursion rules for the hypergeometric
zeta functions, International Journal of Number Theory 10 (2014), no. 7, 1761–1782.
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A: Mathematical and Theoretical 57 (2024), no. 46, Article 465204.
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[CJLW] Shane Chern, Lin Jiu, Shuhan Li, and Liuquan Wang, Leading coefficient in the Hankel determinants
related to binomial and q-binomial transforms, under submission.

[CJS25] Shane Chern, Lin Jiu, and Italo Simonelli, A central limit theorem for a card shuffling problem, Journal
of Combinatorial Theory. Series A. 214 (2025), Article 106048.

[DJ21] Karl Dicher and Lin Jiu, Orthogonal polynomials and Hankel determinants for certain Bernoulli and
Euler polynomials, Journal of Mathematical Analysis and Applications 497 (2021), no. 1, Article
124855.

[DJ22] , Hankel determinants of sequences related to Bernoulli and Euler polynomials, International
Journal of Number Theory 18 (2022), no. 2, 331–359.

[DJ23] , Hankel determinants of shifted sequences of Bernoulli and Euler numbers, Contributions to
Discrete Mathematics 18 (2023), no. 2, 146–175.
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the method of brackets, Open Mathematics 14 (2016), no. 1, 681–686.
[GKJM17] Ivan Gonzalez, Karen Kohl, Lin Jiu, and Victor H. Moll, An extension of the method of brackets. Part

1, Open Mathematics 15 (2017), no. 1, 1181–1211.
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[Jiu16] Lin Jiu, The Method of Brackets and the Bernoulli Symbol, PhD Thesis, Tulane University, New
Orleans, LA, USA, 2016.

[Jiu17] , Integral representations of equally positive integer-indexed harmonic sums at infinity, Research
in Number Theory 3 (2017), Article 10.

[JK20] Lin Jiu and Christoph Koutschan, Calculation and properties of zonal polynomials, Mathematics in
Computer Science 14 (2020), 623–640.

[JL24] Lin Jiu and Ye Li, Hankel determinants of certain sequences of Bernoulli polynomials: A direct proof
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64–84.
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Transforms and Special Functions 25 (2014), no. 10, 777–789.
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[JS19a] Lin Jiu and Diane Yahui Shi, Matrix representation for multiplicative nested sums, Colloquium Math-
ematicum 158 (2019), no. 2, 183–194.

[JS19b] , Orthogonal polynomials and connection to generalized Motzkin numbers for higher-order Euler
polynomials, Journal of Number Theory 199 (2019), 389–402.

[JS22] , Moments and cumulants on identities for Bernoulli and Euler numbers, Mathematical Reports
24 (2022), no. 4, 643–650.

[JSY22] Lin Jiu, Italo Simonelli, and Heng Yue, Loop decompositions of random walks and nontrivial identities
of Bernoulli and Euler polynomials, INTEGERS 22 (2022), Article 91.

[JV16] Lin Jiu and Christophe Vignat, On binomial identities in arbitrary bases, Journal of Integer Sequences
19 (2016), no. 5, Article 16.5.5.

[JV19] , Connection coefficients for higher-order Bernoulli and Euler polynomials: a random walk
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[JVW20] Lin Jiu, Christophe Vignat, and Tanay Wakhare, Analytic continuation for multiple zeta values using
symbolic representations, International Journal of Number Theory 16 (2020), no. 3, 579–602.

[JW] Lin Jiu and Duanduan Wang, On b-ary binomial coefficients with negative entries, under submission.
[LZJS16] Chunhui Li, Erchuan Zhang, Lin Jiu, and Huafei Sun, Optimal control on special Euclidean group

via natural gradient descent algorithm, Science China Information Sciences 59 (2016), no. 11, Article
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[TJKZ20] Nobuki Takayama, Lin Jiu, Satoshi Kuriki, and Yi Zhang, Computation of the expected Euler charac-
teristic for the largest eigenvalue of a real non-central Wishart matrix, Journal of Multivariate Analysis
179 (2020), Article 104642.
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