Implementation of an Algorithm on Converting Sums into Nested Sums

Lin Jiu

Tulane University \& Research Institute for Symbolic Computation (RISC)

$$
\text { January 8, } 2014
$$

Joint Work with Carsten Schneider of RISC

Outlines

(1) BackGround \& Motivation

- A Quick Introduction on Nested Sums
- Sigma.m Package of RISC
(2) The Algorithm [C. Anzai \& Y. Sumino]
- Steps of the Algorithm
- Problems.
(3) Conclusion

Nested Sums

Definition

An indefinite nested sum usually has the form

$$
\begin{aligned}
S(\nu) & =\sum_{\substack{\Lambda(\nu) \geq j_{1} \geq j_{2} \geq \cdots \geq j_{n} \geq 1}} f_{1}\left(j_{1}\right) f_{2}\left(j_{2}\right) \ldots f_{n}\left(j_{n}\right) . \\
& =\sum_{j_{1}=1}^{\Lambda(\nu)} f_{1}\left(j_{1}\right) \sum_{j_{2}=1}^{j_{1}} f_{2}\left(j_{2}\right) \ldots f_{n-1}\left(j_{n-1}\right) \sum_{j_{n}=1}^{j_{n-1}} f_{n}\left(j_{n}\right)
\end{aligned}
$$

Example

Nested Sums

Definition

An indefinite nested sum usually has the form

$$
\begin{aligned}
S(\nu) & =\sum_{\Lambda(\nu) \geq j_{1} \geq j_{2} \geq \cdots \geq j_{n} \geq 1} f_{1}\left(j_{1}\right) f_{2}\left(j_{2}\right) \ldots f_{n}\left(j_{n}\right) . \\
& =\sum_{j_{1}=1}^{\Lambda(\nu)} f_{1}\left(j_{1}\right) \sum_{j_{2}=1}^{j_{1}} f_{2}\left(j_{2}\right) \ldots f_{n-1}\left(j_{n-1}\right) \sum_{j_{n}=1}^{j_{n-1}} f_{n}\left(j_{n}\right)
\end{aligned}
$$

Example

$$
\sum_{j_{1}=0}^{m} \sum_{j_{2}=0}^{j_{1}} \cdots \sum_{j_{n}=0}^{j_{n-1}} 1=\binom{m+n}{n}
$$

Nested Sums Continued

Examples

$$
\left\{\begin{array}{l}
Z\left(n ; m_{1}, \ldots m_{k} ; x_{1}, \ldots, x_{k}\right):=\sum_{n \geq i_{1}>\cdots>i_{k}>0^{\frac{i_{1}}{i_{1}}} \ldots \frac{x_{k}^{i_{1}}}{i_{k}^{i_{k}}}}^{i_{k}^{i_{k}}} \quad \text { Z-sum } \\
S\left(n ; m_{1}, \ldots m_{k} ; x_{1}, \ldots, x_{k}\right):=\sum_{n \geq i_{1} \geq \cdots \geq i_{k} \geq 1^{i_{1}}}^{\frac{x_{1}^{i_{1}}}{i_{1}^{i_{1}}} \ldots \frac{x_{k}^{i_{k}}}{i_{k}^{m_{k}}} \quad \text { S-sum }} \\
H\left(n ; a_{1}, \ldots, a_{k}\right):=\sum_{n \geq i_{1} \geq \cdots \geq i_{k} \geq 1} \frac{\operatorname{sign(a_{1})^{i_{1}}}}{i_{1}^{\left|a_{1}\right|}} \ldots \frac{\operatorname{sign}\left(a_{k}\right)^{i_{k}}}{i_{1}^{\left|a_{k}\right|}} \quad \text { H-sum }
\end{array}\right.
$$

Remark

Nested Sums Continued

Examples

$$
\begin{aligned}
& \left(Z\left(n ; m_{1}, \ldots m_{k} ; x_{1}, \ldots, x_{k}\right):=\sum_{n \geq i_{1}>\cdots>i_{k}>0} 0_{1}^{\frac{x_{1}^{i_{1}}}{i_{1}}} \ldots \frac{x_{k}^{i_{k}}}{i_{k}^{k_{k}}} \quad\right. \text { Z-sum }
\end{aligned}
$$

Remark

$$
\begin{array}{r}
Z(\infty ; s ; 1)=S(\infty ; s ; 1)=\sum_{i=1}^{\infty} \frac{1}{i s}=\zeta(s) \\
H(n ; 1)=\sum_{i=1}^{n} \frac{1}{i}=H_{n} ; H(n ; p(>o))=\sum_{i=1}^{n} \frac{1}{i p}
\end{array}
$$

BackGround \& Motivation

Why "Nested" Sums

$$
S_{1}=S_{2}=: S(\nu)
$$

Why "Nested" Sums

$$
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}}
$$

Fact

$$
S_{1}=S_{2}=: S(\nu)
$$

Why "Nested" Sums

$$
\begin{gathered}
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}} \\
S_{2}(\nu):=\sum_{x=0}^{\nu-1}[\frac{1}{(1+2 x)^{2}}+\underbrace{\frac{1}{(2+2 x)^{2}}-\frac{1}{(1+x)^{2}}}_{=-\frac{3}{4(1+x)^{2}}}]
\end{gathered}
$$

Why "Nested" Sums

$$
\begin{gathered}
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}} \\
S_{2}(\nu):=\sum_{x=0}^{\nu-1}[\frac{1}{(1+2 x)^{2}}+\underbrace{\frac{1}{(2+2 x)^{2}}-\frac{1}{(1+x)^{2}}}_{=-\frac{3}{4(1+x)^{2}}}]
\end{gathered}
$$

Fact

$$
S_{1}=S_{2}=: S(\nu)
$$

Why "Nested" Sums (Continued)

[Question]What is the asymptotic behavior of $S(\nu)$?

[Anwser]

Reason I for Choosing Nested Sums

Asvmptotics.

Why "Nested" Sums (Continued)

[Question]What is the asymptotic behavior of $S(\nu)$?

$$
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}}[\text { VS }] S_{2}(\nu):=\sum_{x=0}^{\nu-1}\left[\frac{1}{(1+2 x)^{2}}-\frac{3}{4(1+x)^{2}}\right]
$$

[Anwser]

Reason I for Choosing Nested Sums

Asymptotics.

Why "Nested" Sums (Continued)

[Question]What is the asymptotic behavior of $S(\nu)$?

$$
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}}[\text { VS }] S_{2}(\nu):=\sum_{x=0}^{\nu-1}\left[\frac{1}{(1+2 x)^{2}}-\frac{3}{4(1+x)^{2}}\right]
$$

[Anwser]

$$
S_{2}(\infty)=0
$$

Reason I for Choosing Nested Sums

Asymptotics.

Why "Nested" Sums (Continued)

[Question]What is the asymptotic behavior of $S(\nu)$?

$$
S_{1}(\nu):=\sum_{x=1}^{\nu} \frac{1}{(x+\nu)^{2}}[\text { VS }] S_{2}(\nu):=\sum_{x=0}^{\nu-1}\left[\frac{1}{(1+2 x)^{2}}-\frac{3}{4(1+x)^{2}}\right]
$$

[Anwser]

$$
S_{2}(\infty)=0
$$

Reason I for Choosing Nested Sums
Asymptotics.

Why "Nested" Sums (Continued)

Reason II for Choosing Nested Sums

Convergence.

Example

Theorem
$S(\infty)$ is convergent iff $m_{1}>1$ [provided that $S(\infty)$ has only finitely many sums]

Why "Nested" Sums (Continued)

Reason II for Choosing Nested Sums

Convergence.

Example

$$
S(\infty)=\sum_{i_{1}=1}^{\infty} \frac{\sum_{i_{2}=1}^{i_{1}} \frac{\sum_{i_{3}=1}^{i_{2}} \cdots}{i_{2}^{m_{2}}}}{i_{1}^{m_{1}}}
$$

Theorem

$S(\infty)$ is convergent iff $m_{1}>1$ [provided that $S(\infty)$ has only finitely many sums]

Why "Nested" Sums (Continued)

Reason II for Choosing Nested Sums

Convergence.

Example

$$
S(\infty)=\sum_{i_{1}=1}^{\infty} \frac{\sum_{i_{2}=1}^{i_{1}} \frac{\sum_{i_{3}=1}^{i_{2}} \cdots}{i_{2}^{m_{2}}}}{i_{1}^{m_{1}}}
$$

Theorem

$S(\infty)$ is convergent iff $m_{1}>1$ [provided that $S(\infty)$ has only finitely many sums].

Why "Nested" Sums (Continued)

Reason III for Choosing Nested Sums

"Algebraic Relations to Reduce the Sum".

> Remark
> This is what the "Sigma.m" package does. [A mathematica package that Carsten works on for years to deal with "all"(at least hypergeometric) sums/products]

Algebraic Relations

In short, given a nested sum, we want to express it in terms of
known special functions, e.g. S-sums, Z-sums, $A F_{B}$, etc. Algebraic relations could help us to find the minimal basis for the expression and reduce the sum

Why "Nested" Sums (Continued)

Reason III for Choosing Nested Sums

"Algebraic Relations to Reduce the Sum".

Remark
 This is what the "Sigma.m" package does. [A mathematica package that Carsten works on for years to deal with "all"(at least hypergeometric) sums/products]

> Algebraic Relations
> In short, given a nested sum, we want to express it in terms of
> known special functions, e.g. S-sums, Z-sums, $A F_{B}$, etc. Algebraic relations could help us to find the minimal basis for the expression
> and reduce the sum

Why "Nested" Sums (Continued)

Reason III for Choosing Nested Sums

"Algebraic Relations to Reduce the Sum".

Remark

This is what the "Sigma.m" package does. [A mathematica package that Carsten works on for years to deal with "all"(at least hypergeometric) sums/products]

Algebraic Relations

In short, given a nested sum, we want to express it in terms of known special functions, e.g. S-sums, Z-sums, $A_{A} F_{B}$, etc. Algebraic relations could help us to find the minimal basis for the expression and reduce the sum.

Sigma.m Package

"Sigma is a Mathematica package that can handle multisums in terms of indefinite nested sums and products. The summation principles of Sigma are: telescoping, creative telescoping and recurrence solving. The underlying machinery of Sigma is based on difference field theory. The package has been developed by Carsten Schneider, a member of the RISC Combinatorics group.
"The source code for this package is password protected. To get the password send an email to Peter Paule. It will be given for free to all researchers and non-commercial users.
Copyright (C) 1999-2012 The RISC Combinatorics Group, Austria - all rights reserved. Commercial use of the software is prohibited without prior written permission.

http://www.risc.jku.at/research/combinat/software/Sigma/index.php

Sigma.m Package (Continued)

In short, "Sigma.m" deals with general multisums.

The algorithm I am working on deals with special case.

Form of the Required Sums

$$
S(\nu)=\sum_{i_{1}=a_{1}(\nu)}^{\sum_{i_{2}}=a_{2}\left(\nu, i_{1}\right)} \sum_{i_{n}=a_{n}\left(\nu, i_{1}, \ldots i_{n-1}\right)}^{b_{2}\left(\nu, i_{1}\right)} \sum_{r}^{b_{n}\left(\nu, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right)^{p_{r}}}
$$

where
$\left(\lambda_{k} \in \mathbb{C}\right.$
$p_{k} \in \mathbb{N}=\{1,2, \ldots\}$
L_{r} is a linear polynomial with integer coefficients
a_{k}, b_{k} are either infinity or linear polynomials with integer coefficients

Form of the Required Sums

$$
S(\nu)=\sum_{i_{1}=a_{1}(\nu)}^{b_{1}(\nu)} \sum_{i_{2}=a_{2}\left(\nu, i_{1}\right)}^{b_{2}\left(\nu, i_{1}\right)} \ldots \sum_{i_{n}=a_{n}\left(\nu, i_{1}, \ldots i_{n-1}\right)}^{b_{n}\left(\nu, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{\prod_{r} L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right)^{p_{r}}},
$$

where
$\left(\lambda_{k} \in \mathbb{C}\right.$
$p_{k} \in \mathbb{N}=\{1,2, \ldots\}$
L_{r} is a linear polynomial with integer coefficients
a_{k}, b_{k} are either infinity or linear polynomials with integer coefficients
NOTE: The number of products in the denominator is unknown.

Examples

Examples

$\sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{(k+m)^{2}(2 m+4 k+1)}=4-2 \mathcal{C} \pi-\frac{\pi^{2}}{6}-4 \log 2+\frac{21}{4} \zeta(3)$.
$\sum_{k=1}^{\infty} \sum_{m=1}^{k} \frac{(-1)^{k+m}}{(k+1)^{2}(2 m+1)}=8 \operatorname{lm}[Z(\infty ; 2,1 ;-i, i)]+4 \mathcal{C} \log 2-\frac{\pi^{3}}{8}-\frac{\pi^{2}}{12}$.
Where, $\mathcal{C}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}}$-Catalan Constant

An Important Notation

Notation

$$
\sum_{k=a}^{b} f(k)= \begin{cases}\sum_{k=a}^{b} f(k) & a \leq b \\ 0 & a=b+1 \\ -\sum_{k=b+1}^{a-1} f(k) & a \geq b+2\end{cases}
$$

Example

An Important Notation

Notation

$$
\sum_{k=a}^{b} f(k)= \begin{cases}\sum_{k=a}^{b} f(k) & a \leq b \\ 0 & a=b+1 \\ -\sum_{k=b+1}^{a-1} f(k) & a \geq b+2\end{cases}
$$

Example

$$
\sum_{x=5}^{2} x=-\sum_{x=3}^{4} x=-7
$$

Key Idea_-Invariant under Shifting

Find a set of integers $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$, s.t.
(1) $\Delta_{0} \neq 0$
(2) $\forall r$,

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right) .
$$

[Question] Does such an integer vector always exist? [Answer] No. For example, when the number of L_{r} 's is larger than the number of sums.

Example

Key Idea_-Invariant under Shifting

Find a set of integers $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$, s.t.
(1) $\Delta_{0} \neq 0$
(2) $\forall r$,

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right) .
$$

[Question] Does such an integer vector always exist?

[Answer] No. For example, when the number of L_{r} 's is larger

 than the number of sums.
Example

Key Idea_—Invariant under Shifting

Find a set of integers $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$, s.t.
(1) $\Delta_{0} \neq 0$
(2) $\forall r$,

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right) .
$$

[Question] Does such an integer vector always exist? [Answer] No. For example, when the number of L_{r} 's is larger than the number of sums.

Example

$$
S(\nu)=\sum_{m=0}^{\infty} \frac{1}{(\nu+m)^{2}(4 \nu+2 m+1)} .
$$

Step I—Partial Fraction Decomposition(PFD)

Step 1—Partial Fraction Decomposition(PFD)

KEY: From the Innermost Sum Index to the Outermost

Example

Result

For each part of the sum, the number of L_{r} 's is NO GREATER THAN the number of sums, i.e. it guarantees the existence of the invariant shifting vector $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$
\square
NOTE
The solution $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$ has at least one free variable to turn rational solutions into integer solutions.

Step I—Partial Fraction Decomposition(PFD)

Step 1—Partial Fraction Decomposition(PFD)

KEY: From the Innermost Sum Index to the Outermost

Example

$$
\sum_{x \geq y \geq z} \frac{1}{(x+y)(y+z)(x+z)}=\sum_{x \geq y \geq z} \frac{1}{2 x}\left[\frac{1}{x+y}+\frac{1}{x-y}\right]\left[\frac{1}{y+z}-\frac{1}{x+z}\right]
$$Result

For each part of the sum, the number of L_{r} 's is NOGREATER THAN the number of sums, i.e. it guarantees theexistence of the invariant shifting vector $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$
NOTE
The solution $\left(\Delta_{0}, \Delta_{1}\right.$ has at least one free variable to
turn rational solutions into integer solutions.

Step I—Partial Fraction Decomposition(PFD)

Step 1—Partial Fraction Decomposition(PFD)

KEY: From the Innermost Sum Index to the Outermost

Example

$$
\sum_{x \geq y \geq z} \frac{1}{(x+y)(y+z)(x+z)}=\sum_{x \geq y \geq z} \frac{1}{2 x}\left[\frac{1}{x+y}+\frac{1}{x-y}\right]\left[\frac{1}{y+z}-\frac{1}{x+z}\right] .
$$

Result

For each part of the sum, the number of L_{r} 's is NO GREATER THAN the number of sums, i.e. it guarantees the existence of the invariant shifting vector $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$.
turn rational solutions into integer solutions.

Step I——Partial Fraction Decomposition(PFD)

Step 1—Partial Fraction Decomposition(PFD)

KEY: From the Innermost Sum Index to the Outermost
Example

$$
\sum_{x \geq y \geq z} \frac{1}{(x+y)(y+z)(x+z)}=\sum_{x \geq y \geq z} \frac{1}{2 x}\left[\frac{1}{x+y}+\frac{1}{x-y}\right]\left[\frac{1}{y+z}-\frac{1}{x+z}\right] .
$$

Result

For each part of the sum, the number of L_{r} 's is NO GREATER THAN the number of sums, i.e. it guarantees the existence of the invariant shifting vector $\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$.

NOTE

The solution ($\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}$) has at least one free variable to turn rational solutions into integer solutions.

Steps of the Algorithm Problems.

Step II——Key Step (Idea)

For a (not completely known) function $f(x)$, suppose we want to compute $f(101)$, by knowing the following

$$
\left\{\begin{array}{l}
f(2) \\
\Delta f(x):=f(x+3)-f(x)
\end{array}\right.
$$

Noting that

$$
\begin{aligned}
& 101 \equiv 2(\bmod 3) \\
f(101) & =f(98)+[f(101)-f(98)] \\
& =f(98)+\Delta f(98) \\
& =\cdots \\
& =f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) .
\end{aligned}
$$

Step II——Key Step (Idea)

For a (not completely known) function $f(x)$, suppose we want to compute $f(101)$, by knowing the following

Noting that
$101 \equiv 2(\bmod 3)$

Step II——Key Step (Idea)

For a (not completely known) function $f(x)$, suppose we want to compute $f(101)$, by knowing the following

$$
\left\{\begin{array}{l}
f(2) \\
\Delta f(x):=f(x+3)-f(x)
\end{array}\right.
$$

Noting that
$101 \equiv 2(\bmod 3)$

Step II—Key Step (Idea)

For a (not completely known) function $f(x)$, suppose we want to compute $f(101)$, by knowing the following

$$
\left\{\begin{array}{l}
f(2) \\
\Delta f(x):=f(x+3)-f(x)
\end{array}\right.
$$

Noting that

$$
101 \equiv 2(\bmod 3)
$$

Step II——Key Step (Idea)

For a (not completely known) function $f(x)$, suppose we want to compute $f(101)$, by knowing the following

$$
\left\{\begin{array}{l}
f(2) \\
\Delta f(x):=f(x+3)-f(x)
\end{array}\right.
$$

Noting that

$$
\begin{aligned}
& 101 \equiv 2(\bmod 3) \\
f(101)= & f(98)+[f(101)-f(98)] \\
= & f(98)+\Delta f(98) \\
= & \cdots \\
= & f(2)+\sum_{k=0}^{32} \Delta f(3 k+2)
\end{aligned}
$$

Step II——Key Step (by Induction)

Now, we could consider

with

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right), r=1, \ldots, n
$$

Define

and

Step II——Key Step (by Induction)

Now, we could consider

$$
S(\nu)=\sum_{i_{1}=a_{1}(\nu)}^{b_{1}(\nu)} \sum_{i_{2}=a_{2}\left(\nu, i_{1}\right)}^{b_{2}\left(\nu, i_{1}\right)} \ldots \sum_{i_{n}=a_{n}\left(\nu, i_{1}, \ldots i_{n-1}\right)}^{b_{n}\left(\nu, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{\prod_{r=1}^{n} L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right)^{p_{r}}}
$$

with

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right), r=1, \ldots, n
$$

Define

Step II——Key Step (by Induction)

Now, we could consider

$$
S(\nu)=\sum_{i_{1}=a_{1}(\nu)}^{b_{1}(\nu)} \sum_{i_{2}=a_{2}\left(\nu, i_{1}\right)}^{b_{2}\left(\nu, i_{1}\right)} \cdots \sum_{i_{n}=a_{n}\left(\nu, i_{1}, \ldots i_{n-1}\right)}^{b_{n}\left(\nu, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{\prod_{r=1}^{n} L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right)^{p_{r}}}
$$

with

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right), r=1, \ldots, n
$$

Define

$$
\lambda:=\prod_{k=1}^{n} \lambda_{k}^{\Delta_{k}}
$$

Step II——Key Step (by Induction)

Now, we could consider

$$
S(\nu)=\sum_{i_{1}=a_{1}(\nu)}^{b_{1}(\nu)} \sum_{i_{2}=a_{2}\left(\nu, i_{1}\right)}^{b_{2}\left(\nu, i_{1}\right)} \ldots \sum_{i_{n}=a_{n}\left(\nu, i_{1}, \ldots i_{n-1}\right)}^{b_{n}\left(\nu, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{\prod_{r=1}^{n} L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right)^{p_{r}}}
$$

with

$$
L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)=L_{r}\left(\nu, i_{1}, \ldots, i_{n}\right), r=1, \ldots, n
$$

Define

$$
\lambda:=\prod_{k=1}^{n} \lambda_{k}^{\Delta_{k}}
$$

and

$$
\Delta S(\nu):=S\left(\nu+\Delta_{0}\right)-\lambda S(\nu)
$$

Step II——Key Step(Continued)

Define

$$
\left\{\begin{array}{l}
\alpha_{k}:=a_{k}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{k-1}+\Delta_{k-1}\right)-a_{k}\left(\nu, i_{1}, \ldots, i_{k-1}\right) \in \mathbb{Z} \\
\beta_{k}:=b_{k}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{k-1}+\Delta_{k-1}\right)-b_{k}\left(\nu, i_{1}, \ldots, i_{k-1}\right) \in \mathbb{Z}
\end{array} .\right.
$$

Then

$S\left(\nu+\Delta_{0}\right)$

Step II——Key Step(Continued)

Define

$$
\left\{\begin{array}{l}
\alpha_{k}:=a_{k}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{k-1}+\Delta_{k-1}\right)-a_{k}\left(\nu, i_{1}, \ldots, i_{k-1}\right) \in \mathbb{Z} \\
\beta_{k}:=b_{k}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{k-1}+\Delta_{k-1}\right)-b_{k}\left(\nu, i_{1}, \ldots, i_{k-1}\right) \in \mathbb{Z}
\end{array} .\right.
$$

Then

$$
\begin{aligned}
S\left(\nu+\Delta_{0}\right) & =\sum_{i_{1}=a_{1}\left(\nu+\Delta_{0}\right)}^{b_{1}\left(\nu+\Delta_{0}\right)} \ldots \sum_{i_{n}=a_{n}\left(\nu+\Delta_{0}, i_{1}, \ldots i_{n-1}\right)}^{b_{n}\left(\nu+\Delta_{0}, i_{1} \ldots, i_{n-1}\right)} \frac{\lambda_{1}^{i_{1}} \ldots \lambda_{n}^{i_{n}}}{\prod_{r=1}^{n} L_{r}\left(\nu+\Delta_{0}, i_{1}, \ldots, i_{n}\right)^{p_{r}}} \\
{\left[i_{k} \mapsto i_{k}+\Delta_{k}\right] } & =\sum_{i_{1}+\Delta_{1}=a_{1}+\alpha_{1}}^{b_{1}+\beta_{1}} \ldots \sum_{i_{n}+\Delta_{n}=a_{n}+\alpha_{n}}^{b_{n}+\beta_{n}} \frac{\lambda_{1}^{i_{1}+\Delta_{1}} \ldots \lambda_{n}^{i_{n}+\Delta_{n}}}{\prod_{r=1}^{n} L_{r}\left(\nu+\Delta_{0}, i_{1}+\Delta_{1}, \ldots, i_{n}+\Delta_{n}\right)^{p_{r}}} \\
& =\lambda \sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \ldots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}} \underbrace{\prod_{r=1}^{n} L_{r}\left(\nu+\Delta_{0}, i_{1}, \ldots, i_{n}\right)^{p_{r}}}_{\text {su:= }}
\end{aligned}
$$

Step II——Key Step(Continued)

$$
\begin{aligned}
\Delta S(\nu) & =S\left(\nu+\Delta_{0}\right)-\lambda S(\nu) \\
& =\lambda\left[\sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \cdots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}}-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}}\right] s u
\end{aligned}
$$

$\Delta S(\nu)$ has at least one quantifier less. Thus, by induction, it can be converted into nested sum

Step II——Key Step(Continued)

$$
\begin{aligned}
& \Delta S(\nu)=S\left(\nu+\Delta_{0}\right)-\lambda S(\nu) \\
& =\lambda\left[\sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \cdots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}}-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}}\right] s u \\
& \sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \cdots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}}-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}} \\
& =\left(\sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{a_{1}-1}+\sum_{i_{1}=a_{1}}^{b_{1}}+\sum_{i_{1}=b_{1}+1}^{b_{1}+\beta_{1}-\Delta_{1}}\right) \cdots\left(\sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{a_{n}-1}+\sum_{i_{n}=a_{n}}^{b_{n}}+\sum_{i_{n}=b_{n}+1}^{b_{n}+\beta_{n}-\Delta_{n}}\right)-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}}
\end{aligned}
$$

Step II——Key Step(Continued)

$$
\begin{aligned}
& \Delta S(\nu)=S\left(\nu+\Delta_{0}\right)-\lambda S(\nu) \\
& =\lambda\left[\sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \cdots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}}-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}}\right] s u \\
& \sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{b_{1}+\beta_{1}-\Delta_{1}} \cdots \sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{b_{n}+\beta_{n}-\Delta_{n}}-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}} \\
& =\left(\sum_{i_{1}=a_{1}+\alpha_{1}-\Delta_{1}}^{a_{1}-1}+\sum_{i_{1}=a_{1}}^{b_{1}}+\sum_{i_{1}=b_{1}+1}^{b_{1}+\beta_{1}-\Delta_{1}}\right) \ldots\left(\sum_{i_{n}=a_{n}+\alpha_{n}-\Delta_{n}}^{a_{n}-1}+\sum_{i_{n}=a_{n}}^{b_{n}}+\sum_{i_{n}=b_{n}+1}^{b_{n}+\beta_{n}-\Delta_{n}}\right)-\sum_{i_{1}=a_{1}}^{b_{1}} \cdots \sum_{i_{n}=a_{n}}^{b_{n}}
\end{aligned}
$$

$\Delta S(\nu)$ has at least one quantifier less. Thus, by induction, it can be converted into nested sum

Steps of the Algorithm Problems.

Step II——Key Step(Continued)

Recall:

$$
f(101)=f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) .
$$

Define
$\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)= \begin{cases}0 & m \neq n(\bmod d) \\ 1 & m \equiv n(\bmod d)\end{cases}$
Then,

Step II——Key Step(Continued)

Recall:

$$
f(101)=f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) .
$$

Define
$\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)= \begin{cases}0 & m \not \equiv n(\bmod d) \\ 1 & m \equiv n(\bmod d)\end{cases}$
Then,

Step II——Key Step(Continued)

Recall:

$$
f(101)=f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) .
$$

Define
$\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)=\left\{\begin{array}{ll}0 & m \not \equiv n(\bmod d) \\ 1 & m \equiv n(\bmod d)\end{array}\right.$.
Then,

Step II——Key Step(Continued)

Recall:

$$
f(101)=f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) .
$$

Define
$\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)=\left\{\begin{array}{ll}0 & m \not \equiv n(\bmod d) \\ 1 & m \equiv n(\bmod d)\end{array}\right.$.
Then,

$$
f(101)=f(2)+\sum_{k=2}^{98(=101-3)} \operatorname{Proj}(k, 2,3) \Delta f(k) .
$$

Step II——Key Step(Continued)

Suppose $\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\}$, s.t. $\nu \equiv \nu_{0}\left(\bmod \Delta_{0}\right)$, then

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\nu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

[Question] How to deal with $S\left(\nu_{0}\right)$?

FACT(Good News)

$\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\} \Rightarrow S\left(\nu_{0}\right)$ is determined.

[Solution] Rewrite the sum.

Step II——Key Step(Continued)

Suppose $\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\}$, s.t. $\nu \equiv \nu_{0}\left(\bmod \Delta_{0}\right)$, then

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\nu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

[Question] How to deal with $S\left(\nu_{0}\right)$?

FACT(Good News)

$\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\} \Longrightarrow S\left(\nu_{0}\right)$ is determined.
[Solution] Rewrite the sum.

Step II——Key Step(Continued)

Suppose $\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\}$, s.t. $\nu \equiv \nu_{0}\left(\bmod \Delta_{0}\right)$, then

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\nu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

[Question] How to deal with $S\left(\nu_{0}\right)$?

FACT(Good News)

$$
\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\} \Longrightarrow S\left(\nu_{0}\right) \text { is determined } .
$$

[Solution] Rewrite the sum.

Step II——Key Step(Continued)

Suppose $\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\}$, s.t. $\nu \equiv \nu_{0}\left(\bmod \Delta_{0}\right)$, then

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\nu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

[Question] How to deal with $S\left(\nu_{0}\right)$?

FACT(Good News)

$$
\nu_{0} \in\left\{0,1, \ldots, \Delta_{0}\right\} \Longrightarrow S\left(\nu_{0}\right) \text { is determined }
$$

[Solution] Rewrite the sum.

Step II——Key Step(Continued)

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}
$$

Replacing ν_{0} by μ_{0} :

Multipling by a Projector and Adding a definite sum:

Rewriting the Inner Sum Range and Symplifying

Step II——Key Step(Continued)

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}
$$

Replacing ν_{0} by μ_{0} :

$$
S(\nu)=\lambda^{\frac{\nu-\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=\mu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

Multipling by a Projector and Adding a definite sum:

Rewriting the Inner Sum Range and Symplifying

Step II——Key Step(Continued)

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}
$$

Replacing ν_{0} by μ_{0} :

$$
S(\nu)=\lambda^{\frac{\nu-\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=\mu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

Multipling by a Projector and Adding a definite sum:
$S(\nu)=\sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{\frac{\nu-\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=\mu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}\right]$.
Rewriting the Inner Sum Range and Symplifying

Step II——Key Step(Continued)

$$
S(\nu)=\lambda^{\frac{\nu-\nu_{0}}{\Delta_{0}}} S\left(\nu_{0}\right)+\sum_{\mu=\nu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \nu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}
$$

Replacing ν_{0} by μ_{0} :

$$
S(\nu)=\lambda^{\frac{\nu-\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=\mu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}} .
$$

Multipling by a Projector and Adding a definite sum:

$$
S(\nu)=\sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{\frac{\nu-\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=\mu_{0}}^{\nu-\Delta_{0}} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{\frac{\nu-\mu-\Delta_{0}}{\Delta_{0}}}\right] .
$$

Rewriting the Inner Sum Range and Symplifying

$$
S(\nu)=\lambda^{\frac{\nu}{\Delta_{0}}} \sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{-\frac{\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\substack{\mu=0 \\ \uparrow}}^{\nu-1} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{-\frac{\mu+\Delta_{0}}{\Delta_{0}}}\right] .
$$

Example

Example

$$
\begin{aligned}
S(\nu)= & \sum_{x=1}^{\nu} \sum_{y=1}^{x} \frac{1}{(\nu-x+1)(x+y+1)} \\
= & \sum_{x=0}^{\nu-1} \frac{1}{3(1+x)}+\sum_{x=0}^{\nu-1} \sum_{y=0}^{x-1} \frac{1}{2(x+2)}\left[\frac{1}{y+1}-\frac{1}{y+2}\right] \\
& -\sum_{x=0}^{\nu-1} \sum_{y=0}^{x-1} \frac{1}{x+3}\left[\frac{1}{y+1}+\frac{1}{y+3}\right] \\
& +\sum_{x=0}^{\nu-1} \sum_{y=0}^{x-1} \frac{1}{2 x+5}\left[\frac{1}{y+1}+\frac{1}{2 y+5}\right]
\end{aligned}
$$

Advantages of the Algorithm

Speed.

This is the reason for Carsten to have interest in this algorithm.

Advantages of the Algorithm

Speed.
This is the reason for Carsten to have interest in this algorithm.

Problem I —_Compatiblity with Sigma.m

Problem I

Sigma.m can only deal with the cases when the upper bound of the inner sum is the index of the next outer sum.

[^0]Shift the sum index, ACCORDINGLY

Problem I ——Compatiblity with Sigma.m

Problem I

Sigma.m can only deal with the cases when the upper bound of the inner sum is the index of the next outer sum.

$$
\ldots f_{k+1}\left(i_{k+1}\right) \sum_{i_{k}=1}^{i_{k+1}} f_{k}\left(i_{k}\right) \ldots \checkmark
$$

Solution

Shift the sum index, ACCORDINGLY

Problem I ——Compatiblity with Sigma.m

Problem I

Sigma.m can only deal with the cases when the upper bound of the inner sum is the index of the next outer sum.

$$
\begin{aligned}
& \ldots f_{k+1}\left(i_{k+1}\right) \sum_{i_{k}=1}^{i_{k+1}} f_{k}\left(i_{k}\right) \ldots \checkmark \\
& \ldots f_{k+1}\left(i_{k+1}\right) \sum_{i_{k}=1}^{i_{k+1}-1} f_{k}\left(i_{k}\right) \ldots \times
\end{aligned}
$$

Solution

Shift the sum index, ACCORDINGLY

Problem I —— Compatiblity with Sigma.m

Problem I

Sigma.m can only deal with the cases when the upper bound of the inner sum is the index of the next outer sum.

$$
\begin{aligned}
& \ldots f_{k+1}\left(i_{k+1}\right) \sum_{i_{k}=1}^{i_{k+1}} f_{k}\left(i_{k}\right) \ldots \checkmark \\
& \ldots f_{k+1}\left(i_{k+1}\right) \sum_{i_{k}=1}^{i_{k+1}-1} f_{k}\left(i_{k}\right) \ldots \times
\end{aligned}
$$

Solution

Shift the sum index, ACCORDINGLY.

Steps of the Algorithm

 Problems.
Problem II_—Root of Unity

Recall:

$$
\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)= \begin{cases}0 & m \neq n(\bmod d) \\ 1 & m \equiv n(\bmod d)\end{cases}
$$

Example

$$
\left\{\begin{array}{l}
\operatorname{Proj}(m, n, 1) \equiv 1 \\
\operatorname{Proj}(m, n, 2)=\frac{(-1)^{m}+(-1)^{n}}{2}
\end{array}\right.
$$

When $d \geq 3$, root of unity is inevitable.

Example

$$
\operatorname{Proj}(6,2,3)=\frac{\frac{1}{3}\left(1+e^{-\frac{2 \pi i}{3}}+e^{\frac{2 \pi i}{3}}\right)}{\text { Mathematica }}=0
$$

Problem II——Root of Unity

Recall:

$$
\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)=\left\{\begin{array}{ll}
0 & m \not \equiv n(\bmod d) \\
1 & m \equiv n(\bmod d)
\end{array} .\right.
$$

Example

When $d \geq 3$, root of unity is inevitable.

Example

Steps of the Algorithm Problems.

Problem II——Root of Unity

Recall:

$$
\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)=\left\{\begin{array}{ll}
0 & m \not \equiv n(\bmod d) \\
1 & m \equiv n(\bmod d)
\end{array} .\right.
$$

Example

$$
\left\{\begin{array}{l}
\operatorname{Proj}(m, n, 1) \equiv 1 \\
\operatorname{Proj}(m, n, 2)=\frac{(-1)^{m}+(-1)^{n}}{2}
\end{array}\right.
$$

When $d \geq 3$, root of unity is inevitable.

Example

Problem II——Root of Unity

Recall:

$$
\operatorname{Proj}(m, n, d)=\frac{1}{d} \sum_{k=1}^{d} \exp \left(2 \pi i k \frac{m-n}{d}\right)=\left\{\begin{array}{ll}
0 & m \not \equiv n(\bmod d) \\
1 & m \equiv n(\bmod d)
\end{array} .\right.
$$

Example

$$
\left\{\begin{array}{l}
\operatorname{Proj}(m, n, 1) \equiv 1 \\
\operatorname{Proj}(m, n, 2)=\frac{(-1)^{m}+(-1)^{n}}{2}
\end{array}\right.
$$

When $d \geq 3$, root of unity is inevitable.
Example

$$
\operatorname{Proj}(6,2,3)=\frac{\frac{1}{3}\left(1+e^{-\frac{2 \pi i}{3}}+e^{\frac{2 \pi i}{3}}\right)}{\text { Mathematica }}=0
$$

Problem II——Root of Unity (Continued)

FACT
 There is no other substitutions for the projector function.

Solutions/Compromise

(3) Try to make Δ_{0} as small as possible. ($\Delta_{0}=1$ or $\left.\Delta_{0}=2\right)$
(2) "Replacement $\nu \mapsto \Delta_{0} \nu$ ". (Conditionally)

We can only make such replacement for the outermost sum.

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

(1) Try to make Δ_{0} as small as possible. $\left(\Delta_{0}=1\right.$ or $\left.\Delta_{0}=2\right)$
2. "Renlacement $\nu \mapsto \Lambda_{0} \downarrow$ ". (Conditionally)

We can only make such replacement for the outermost sum.

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

(1) Try to make Δ_{0} as small as possible. $\left(\Delta_{0}=1\right.$ or $\left.\Delta_{0}=2\right)$
(3) "Replacement $\nu \mapsto \triangle_{0} \nu$ ". (Conditionally)

We can only make such replacement for the outermost sum.

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

(1) Try to make Δ_{0} as small as possible. ($\Delta_{0}=1$ or $\left.\Delta_{0}=2\right)$
(2) "Replacement $\nu \mapsto \Delta_{0} \nu$ ". (Conditionally)

We can only make such replacement for the outermost sum

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

(1) Try to make Δ_{0} as small as possible. ($\Delta_{0}=1$ or $\left.\Delta_{0}=2\right)$
(2) "Replacement $\nu \mapsto \Delta_{0} \nu$ ". (Conditionally)

We can only make such replacement for the outermost sum.

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

(1) Try to make Δ_{0} as small as possible. ($\Delta_{0}=1$ or $\left.\Delta_{0}=2\right)$
(2) "Replacement $\nu \mapsto \Delta_{0} \nu$ ". (Conditionally)

We can only make such replacement for the outermost sum.

Problem III——Poles

FACT

It is very common when converting sums into nested sums.

Example

[Created by PFD]

$\bar{S}(1)$

Problem III_—Poles

FACT

It is very common when converting sums into nested sums.

Example

[Created by PFD]

$$
S(\nu)=\sum_{x=1}^{\nu} \frac{1}{(\nu+x)(x+1)} \Rightarrow S(1)=\frac{1}{4}
$$

Problem III——Poles

FACT

It is very common when converting sums into nested sums.

Example

[Created by PFD]

$$
\begin{aligned}
& S(\nu)=\sum_{x=1}^{\nu} \frac{1}{(\nu+x)(x+1)} \Rightarrow S(1)=\frac{1}{4} \\
& \bar{S}(\nu)= \sum_{x=1}^{\nu}\left[\frac{1}{(\nu-1)(\nu+x)}-\frac{1}{(\nu-1)(x+1)}\right] \\
&= \frac{1}{\nu-1} \sum_{x=0}^{\nu-1}\left[\frac{1}{x+2}+\frac{1}{x+1}-\frac{1}{2 x+1}-\frac{1}{2 x+2}\right] \\
& \bar{S}(1) \quad=\quad \frac{0}{0}=\text { 'Indetermined" }
\end{aligned}
$$

Problem III——Poles (Continued)

Example

[Created by Shifting (Crossing the Boundary)]

$$
S(\nu)=\sum_{x=1}^{\nu} \sum_{z=1}^{x-1} \frac{1}{(\nu+x+1)(x+z)} .
$$

Note:

$$
\Delta_{0}=1, \Delta_{x}=\Delta_{1}=-1, \Delta_{z}=\Delta_{2}=1 .
$$

Fact
While computing $\Delta S(\nu)$, the following sum appears

Problem III——Poles (Continued)

Example

[Created by Shifting (Crossing the Boundary)]

$$
S(\nu)=\sum_{x=1}^{\nu} \sum_{z=1}^{x-1} \frac{1}{(\nu+x+1)(x+z)}
$$

Note:

$$
\Delta_{0}=1, \Delta_{x}=\Delta_{1}=-1, \Delta_{z}=\Delta_{2}=1
$$

Fact

While computing $\Delta S(\nu)$, the following sum appears

$$
\sum_{x=1}^{\nu} \sum_{z=(x-1)+1}^{(x-1)+(-1)-1} \frac{1}{(\nu+x+1)(x+z)}=-\sum_{x=1}^{\nu}\left[\frac{1}{(\nu+x+1)(2 x-1)}+\frac{1}{(\nu+x+1)(2 x-2)}\right],
$$

Dealing with Poles—by Authors

Remark

In the paper, during Step II, when poles/divergence terms are created, they introduce regularization parameter, by $i_{k} \mapsto i_{k}+\delta_{k}$. Also, the paper talks about Step III, evaluation, which one can eventually send $\delta_{k} \rightarrow 0$.

Example

[^1]
Dealing with Poles—by Authors

Remark

In the paper, during Step II, when poles/divergence terms are created, they introduce regularization parameter, by $i_{k} \mapsto i_{k}+\delta_{k}$. Also, the paper talks about Step III, evaluation, which one can eventually send $\delta_{k} \rightarrow 0$.

Example

$$
\sum_{x \geq y \geq z \geq 1} \frac{1}{2 x(x-y)(x+z)} \mapsto \sum_{x \geq y \geq z \geq 1} \frac{1}{2 x(x-y+\delta)(x+z)}
$$

[^2]
Dealing with Poles-by Authors

Remark

In the paper, during Step II, when poles/divergence terms are created, they introduce regularization parameter, by $i_{k} \mapsto i_{k}+\delta_{k}$. Also, the paper talks about Step III, evaluation, which one can eventually send $\delta_{k} \rightarrow 0$.

Example

$$
\sum_{x \geq y \geq z \geq 1} \frac{1}{2 x(x-y)(x+z)} \mapsto \sum_{x \geq y \geq z \geq 1} \frac{1}{2 x(x-y+\delta)(x+z)}
$$

FACT

The speed will be slowed down dramatically by introducing more parameters, which violates our original purpose for implementation.

Dealing with Poles-Modifying the Starting Point

[Q]:Recall the expression

and suppose $\Delta S(\mu)$ has a pole at $\mu=1$. How to deal with it? RECALL

Dealing with Poles-Modifying the Starting Point

[Q]:Recall the expression

$$
S(\nu)=\lambda^{\frac{\nu}{\Delta_{0}}} \sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{-\frac{\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=0}^{\nu-1} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{-\frac{\mu+\Delta_{0}}{\Delta_{0}}}\right],
$$

and suppose $\Delta S(\mu)$ has a pole at $\mu=1$. How to deal with it?

Dealing with Poles-Modifying the Starting Point

[Q]:Recall the expression

$$
S(\nu)=\lambda^{\frac{\nu}{\Delta_{0}}} \sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{-\frac{\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=0}^{\nu-1} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{-\frac{\mu+\Delta_{0}}{\Delta_{0}}}\right],
$$

and suppose $\Delta S(\mu)$ has a pole at $\mu=1$. How to deal with it? RECALL

$$
\begin{aligned}
f(101) & =f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) \\
& =f(5)+\sum_{k=1}^{32} \Delta f(3 k+2) \\
& =\ldots
\end{aligned}
$$

Dealing with Poles-Modifying the Starting Point

[Q]:Recall the expression

$$
S(\nu)=\lambda^{\frac{\nu}{\Delta_{0}}} \sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{-\frac{\mu_{0}}{\Delta_{0}}} S\left(\mu_{0}\right)+\sum_{\mu=0}^{\nu-1} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{-\frac{\mu+\Delta_{0}}{\Delta_{0}}}\right],
$$

and suppose $\Delta S(\mu)$ has a pole at $\mu=1$. How to deal with it? RECALL

$$
\begin{aligned}
f(101) & =f(2)+\sum_{k=0}^{32} \Delta f(3 k+2) \\
& =f(5)+\sum_{k=1}^{32} \Delta f(3 k+2) \\
& =\ldots
\end{aligned}
$$

Dealing with Poles-Modifying the Starting Point (Continued)

KEY
 Find $k \in \mathbb{N}$, s.t. $k \cdot \Delta_{0}>1$ (the largest pole of $\left.\Delta S(\mu) \& S\left(\nu_{0}\right)\right)$

Corresponding Expression

Dealing with Poles-Modifying the Starting Point (Continued)

KEY

Find $k \in \mathbb{N}$, s.t. $k \cdot \Delta_{0}>1$ (the largest pole of $\left.\Delta S(\mu) \& S\left(\nu_{0}\right)\right)$.

Corresponding Expression

Dealing with Poles-Modifying the Starting Point (Continued)

KEY

Find $k \in \mathbb{N}$, s.t. $k \cdot \Delta_{0}>1$ (the largest pole of $\left.\Delta S(\mu) \& S\left(\nu_{0}\right)\right)$.

Corresponding Expression

$S(\nu)=\lambda^{\frac{\nu}{\Delta_{0}}} \sum_{\mu_{0}=0}^{\Delta_{0}-1} \operatorname{Proj}\left(\nu, \mu_{0}, \Delta_{0}\right)\left[\lambda^{-\frac{\mu_{0}}{\Delta_{0}}-k} S\left(\mu_{0}+k \cdot \Delta_{0}\right)+\sum_{\mu=k \Delta_{0}}^{\nu-1} \operatorname{Proj}\left(\mu, \mu_{0}, \Delta_{0}\right) \Delta S(\mu) \lambda^{-\frac{\mu+\Delta_{0}}{\Delta_{0}}}\right]$

Dealing with Poles-Splitting the Sums

Example

Dealing with Poles-Splitting the Sums

Example

$$
\begin{aligned}
S(\nu) & :=\sum_{x=1}^{\nu} \sum_{y=1}^{x} \frac{1}{(x+y)(y+1)} \\
& =\sum_{x=1}^{\nu} \sum_{y=1}^{x}\left[\frac{1}{(x-1)(x+y)}-\frac{1}{(x-1)(y+1)}\right]
\end{aligned}
$$

Dealing with Poles-Splitting the Sums

Example

$$
\begin{aligned}
S(\nu) & :=\sum_{x=1}^{\nu} \sum_{y=1}^{x} \frac{1}{(x+y)(y+1)} \\
& =\sum_{x=1}^{\nu} \sum_{y=1}^{x}\left[\frac{1}{(x-1)(x+y)}-\frac{1}{(x-1)(y+1)}\right] \\
& \left\{\begin{array}{l}
S_{1}(\nu)=\left.\sum_{x=1}^{\nu} \sum_{y=1}^{x} \frac{1}{(x+y)(y+1)}\right|_{x=1}=\frac{1}{4} \\
S_{2}(\nu)=\sum_{x=2}^{\nu} \sum_{y=1}^{x} \frac{1}{(x+y)(y+1)}
\end{array}\right.
\end{aligned}
$$

Conclusion

Conclusions/Experience

(1) This algorithm works faster than the usual/general method of Sigma.m.
(2) Root of unity is inherited from the algorithm. It seems to be impossible to avoid.

3 Poles are very common while converting sums (creating telescoping). And the poles created by PFD is easier to deal with comparing to those from shifting.
4 Adding regularization parameters will slow down this algorithm dramatically.

Conclusion

Conclusions/Experience

(1) This algorithm works faster than the usual/general method of Sigma.m.
(2) Root of unity is inherited from the algorithm. It seems to be impossible to avoid.
(3) Poles are very common while converting sums (creating telescoping). And the poles created by PFD is easier to deal with comparing to those from shifting.

- Adding regularization parameters will slow down this algorithm dramatically.

Conclusion

Conclusions/Experience

(1) This algorithm works faster than the usual/general method of Sigma.m.
(2) Root of unity is inherited from the algorithm. It seems to be impossible to avoid.
(3) Poles are very common while converting sums (creating telescoping). And the poles created by PFD is easier to deal with comparing to those from shifting.

- Adding regularization parameters will slow down this algorithm dramatically.

Conclusion

Conclusions/Experience

(1) This algorithm works faster than the usual/general method of Sigma.m.
(2) Root of unity is inherited from the algorithm. It seems to be impossible to avoid.
(3) Poles are very common while converting sums (creating telescoping). And the poles created by PFD is easier to deal with comparing to those from shifting.
(9) Adding regularization parameters will slow down this algorithm dramatically.

THE END

Thank you!

[^0]: Solution

[^1]: FACT
 The speed will be slowed down dramatically by introducing more
 parameters, which violates our original purpose for implementation

[^2]: FACT
 The speed will be slowed down dramatically by introducing more parameters, which violates our original purpose for implementation

