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Nested Sums

Definition

An indefinite nested sum usually has the form

S (ν) =
∑

Λ(ν)≥j1≥j2≥···≥jn≥1

f1 (j1) f2 (j2) . . . fn (jn) .

=

Λ(ν)∑
j1=1

f1 (j1)

j1∑
j2=1

f2 (j2) . . . fn−1 (jn−1)

jn−1∑
jn=1

fn (jn)

Example

m∑
j1=0

j1∑
j2=0

· · ·
jn−1∑
jn=0

1 =

(
m + n

n

)
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Nested Sums Continued

Examples



Z (n; m1, . . .mk ; x1, . . . , xk) :=
∑

n≥i1>···>ik>0

x
i1
1

i
m1
1

. . .
x
ik
k

i
mk
k

Z-sum

S (n; m1, . . .mk ; x1, . . . , xk) :=
∑

n≥i1≥···≥ik≥1

x
i1
1

i
m1
1

. . .
x
ik
k

i
mk
k

S-sum

H (n; a1, . . . , ak) :=
∑

n≥i1≥···≥ik≥1

sign(a1)i1

i
|a1|
1

. . . sign(ak )ik

i
|ak |
1

H-sum

Remark

Z (∞; s; 1) = S (∞; s; 1) =
∞∑
i=1

1

i s
= ζ (s)

H (n; 1) =
n∑

i=1

1

i
= Hn; H (n; p (> o)) =

n∑
i=1

1

ip
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Why“Nested”Sums

S1 (ν) :=
ν∑

x=1

1

(x + ν)2

S2 (ν) :=
ν−1∑
x=0


1

(1 + 2x)2 +
1

(2 + 2x)2 −
1

(1 + x)2︸ ︷︷ ︸
=− 3

4(1+x)2


Fact

S1 = S2 =: S (ν)
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Why“Nested”Sums (Continued)

[Question]What is the asymptotic behavior of S (ν)?

S1 (ν) :=
ν∑

x=1

1

(x + ν)2 [VS] S2 (ν) :=
ν−1∑
x=0

[
1

(1 + 2x)2 −
3

4 (1 + x)2

]
[Anwser]

S2 (∞) = 0

Reason I for Choosing Nested Sums

Asymptotics.
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Why“Nested”Sums (Continued)

Reason II for Choosing Nested Sums

Convergence.

Example

S (∞) =
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

...

i
m2
2

im1
1

.

Theorem

S (∞) is convergent iff m1 > 1 [provided that S (∞) has only
finitely many sums].
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Why“Nested”Sums (Continued)

Reason III for Choosing Nested Sums

“Algebraic Relations to Reduce the Sum”.

Remark

This is what the “Sigma.m” package does. [A mathematica
package that Carsten works on for years to deal with “all“(at least
hypergeometric) sums/products]

Algebraic Relations

In short, given a nested sum, we want to express it in terms of
known special functions, e.g. S-sums, Z-sums, AFB , etc. Algebraic
relations could help us to find the minimal basis for the expression
and reduce the sum.
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Sigma.m Package

“Sigma is a Mathematica package that can handle multisums in
terms of indefinite nested sums and products. The summation
principles of Sigma are: telescoping, creative telescoping and
recurrence solving. The underlying machinery of Sigma is based on
difference field theory. The package has been developed by Carsten
Schneider, a member of the RISC Combinatorics group. “
“The source code for this package is password protected. To get
the password send an email to Peter Paule. It will be given for free
to all researchers and non-commercial users.
Copyright © 1999–2012 The RISC Combinatorics Group, Austria
— all rights reserved. Commercial use of the software is prohibited
without prior written permission. “

http://www.risc.jku.at/research/combinat/software/Sigma/index.php
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Sigma.m Package (Continued)

In short, “Sigma.m” deals with general multisums.

The algorithm I am working on deals with special case.
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Steps of the Algorithm
Problems.

Form of the Required Sums

S (ν) =

b1(ν)∑
i1=a1(ν)

b2(ν,i1)∑
i2=a2(ν,i1)

· · ·
bn(ν,i1...,in−1)∑

in=an(ν,i1,...in−1)

λi11 . . . λ
in
n∏

r
Lr (ν, i1, . . . , in)pr

,

where
λk ∈ C
pk ∈ N = {1, 2, . . . }
Lr is a linear polynomial with integer coefficients

ak , bk are either infinity or linear polynomials with integer coefficients

NOTE: The number of products in the denominator is unknown.
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Examples

Examples
∞∑
k=1

∞∑
m=1

1
(k+m)2(2m+4k+1)

= 4− 2Cπ − π2

6 − 4 log 2 + 21
4 ζ (3).

∞∑
k=1

k∑
m=1

(−1)k+m

(k+1)2(2m+1)
= 8Im [Z (∞; 2, 1;−i , i)] + 4C log 2− π3

8 −
π2

12 .

Where, C =
∞∑
k=0

(−1)k

(2k+1)2 —Catalan Constant
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An Important Notation

Notation

b∑
k=a

′
f (k) =



b∑
k=a

f (k) a ≤ b

0 a = b + 1

−
a−1∑

k=b+1
f (k) a ≥ b + 2

.

Example

2∑
x=5

x = −
4∑

x=3

x = −7
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Steps of the Algorithm
Problems.

Key Idea——Invariant under Shifting

Find a set of integers (∆0,∆1, . . . ,∆n), s.t.
(1) ∆0 6= 0
(2) ∀r ,

Lr (ν + ∆0, i1 + ∆1, . . . , in + ∆n) = Lr (ν, i1, . . . , in) .

[Question] Does such an integer vector always exist?
[Answer] No. For example, when the number of Lr ’s is larger
than the number of sums.

Example

S (ν) =
∞∑

m=0

1

(ν + m)2 (4ν + 2m + 1)
.
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Step I——Partial Fraction Decomposition(PFD)

KEY: From the Innermost Sum Index to the Outermost

Example∑
x≥y≥z

1
(x+y)(y+z)(x+z) =

∑
x≥y≥z

1
2x

[
1

x+y + 1
x−y

] [
1

y+z −
1

x+z

]
.

Result

For each part of the sum, the number of Lr ’s is NO
GREATER THAN the number of sums, i.e. it guarantees the
existence of the invariant shifting vector (∆0,∆1, . . . ,∆n).

NOTE

The solution (∆0,∆1, . . . ,∆n) has at least one free variable to
turn rational solutions into integer solutions.
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Steps of the Algorithm
Problems.

Step II——Key Step (Idea)

For a (not completely known) function f (x), suppose we want to
compute f (101), by knowing the following{

f (2)

∆f (x) := f (x + 3)− f (x)
.

Noting that
101 ≡ 2 (mod 3)

f (101) = f (98) + [f (101)− f (98)]

= f (98) + ∆f (98)

= . . .

= f (2) +
32∑
k=0

∆f (3k + 2) .
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Steps of the Algorithm
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Step II——Key Step (by Induction)

Now, we could consider

S (ν) =

b1(ν)∑
i1=a1(ν)

b2(ν,i1)∑
i2=a2(ν,i1)

· · ·
bn(ν,i1...,in−1)∑

in=an(ν,i1,...in−1)

λi11 . . . λ
in
n

n∏
r=1

Lr (ν, i1, . . . , in)pr
,

with

Lr (ν + ∆0, i1 + ∆1, . . . , in + ∆n) = Lr (ν, i1, . . . , in) , r = 1, . . . , n

Define

λ :=
n∏

k=1

λ∆k
k ,

and

∆S (ν) := S (ν + ∆0)− λS (ν) .
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Steps of the Algorithm
Problems.

Step II——Key Step(Continued)

Define{
αk := ak (ν + ∆0, i1 + ∆1, . . . , ik−1 + ∆k−1)− ak (ν, i1, . . . , ik−1) ∈ Z
βk := bk (ν + ∆0, i1 + ∆1, . . . , ik−1 + ∆k−1)− bk (ν, i1, . . . , ik−1) ∈ Z

.

Then

S (ν + ∆0) =

b1(ν+∆0)∑
i1=a1(ν+∆0)

· · ·
bn(ν+∆0,i1...,in−1)∑

in=an(ν+∆0,i1,...in−1)

λi11 . . . λ
in
n

n∏
r=1

Lr (ν + ∆0, i1, . . . , in)pr

[ik 7→ ik + ∆k ] =

b1+β1∑
i1+∆1=a1+α1

· · ·
bn+βn∑

in+∆n=an+αn

λi1+∆1
1 . . . λin+∆n

n
n∏

r=1
Lr (ν + ∆0, i1 + ∆1, . . . , in + ∆n)pr

= λ

b1+β1−∆1∑
i1=a1+α1−∆1

· · ·
bn+βn−∆n∑

in=an+αn−∆n

λi11 . . . λ
in
n

n∏
r=1

Lr (ν + ∆0, i1, . . . , in)pr︸ ︷︷ ︸
su:=

.
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Step II——Key Step(Continued)

∆S (ν) = S (ν + ∆0)− λS (ν)

= λ

 b1+β1−∆1∑
i1=a1+α1−∆1

· · ·
bn+βn−∆n∑

in=an+αn−∆n

−
b1∑

i1=a1

· · ·
bn∑

in=an

 su

b1+β1−∆1∑
i1=a1+α1−∆1

· · ·
bn+βn−∆n∑

in=an+αn−∆n

−
b1∑

i1=a1

· · ·
bn∑

in=an

=

 a1−1∑
i1=a1+α1−∆1

+

b1∑
i1=a1

+

b1+β1−∆1∑
i1=b1+1

 . . .
 an−1∑

in=an+αn−∆n

+

bn∑
in=an

+

bn+βn−∆n∑
in=bn+1

− b1∑
i1=a1

· · ·
bn∑

in=an

=


a1−1∑

i1=a1+α1−∆1

+

b1+β1−∆1∑
i1=b1+1

Summable

+

b1∑
i1=a1

Symbolic

 . . .


an−1∑
in=an+αn−∆n

+

bn+βn−∆n∑
in=bn+1

Summable

+

bn∑
in=an

Symbolic

−
b1∑

i1=a1

· · ·
bn∑

in=an

∆S (ν) has at least one quantifier less. Thus, by induction, it
can be converted into nested sum
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Conclusion

Steps of the Algorithm
Problems.

Step II——Key Step(Continued)

Recall:

f (101) = f (2) +
32∑
k=0

∆f (3k + 2) .

Define

Proj (m, n, d) =
1

d

d∑
k=1

exp

(
2πik

m − n

d

)
=

{
0 m 6≡ n (mod d)

1 m ≡ n (mod d)
.

Then,

f (101) = f (2) +

98(=101−3)∑
k=2

Proj (k, 2, 3) ∆f (k) .
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Conclusion

Steps of the Algorithm
Problems.

Step II——Key Step(Continued)

Suppose ν0 ∈ {0, 1, . . . ,∆0}, s.t. ν ≡ ν0 (mod ∆0), then

S (ν) = λ
ν−ν0

∆0 S (ν0) +

ν−∆0∑
µ=ν0

Proj (µ, ν0,∆0) ∆S (ν)λ
ν−µ−∆0

∆0 .

[Question] How to deal with S (ν0)?

FACT(Good News)

ν0 ∈ {0, 1, . . . ,∆0} =⇒ S (ν0) is determined.

[Solution] Rewrite the sum.
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Conclusion

Steps of the Algorithm
Problems.

Step II——Key Step(Continued)

S (ν) = λ
ν−ν0

∆0 S (ν0) +

ν−∆0∑
µ=ν0

Proj (µ, ν0,∆0) ∆S (µ)λ
ν−µ−∆0

∆0

Replacing ν0 by µ0:

S (ν) = λ
ν−µ0

∆0 S (µ0) +

ν−∆0∑
µ=µ0

Proj (µ, µ0,∆0) ∆S (µ)λ
ν−µ−∆0

∆0 .

Multipling by a Projector and Adding a definite sum:

S (ν) =

∆0−1∑
µ0=0

Proj (ν, µ0,∆0)

λ ν−µ0
∆0 S (µ0) +

ν−∆0∑
µ=µ0

Proj (µ, µ0,∆0) ∆S (µ)λ
ν−µ−∆0

∆0

 .
Rewriting the Inner Sum Range and Symplifying

S (ν) = λ
ν

∆0

∆0−1∑
µ0=0

Proj (ν, µ0,∆0)

λ− µ0
∆0 S (µ0) +

ν−1∑
µ=0

↑

Proj (µ, µ0,∆0) ∆S (µ)λ
−µ+∆0

∆0

 .
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Example

Example

S (ν) =
ν∑

x=1

x∑
y=1

1

(ν − x + 1) (x + y + 1)

=
ν−1∑
x=0

1

3 (1 + x)
+
ν−1∑
x=0

x−1∑
y=0

1

2 (x + 2)

[
1

y + 1
− 1

y + 2

]

−
ν−1∑
x=0

x−1∑
y=0

1

x + 3

[
1

y + 1
+

1

y + 3

]

+
ν−1∑
x=0

x−1∑
y=0

1

2x + 5

[
1

y + 1
+

1

2y + 5

]
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Advantages of the Algorithm

Speed.
This is the reason for Carsten to have interest in this algorithm.
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Steps of the Algorithm
Problems.

Problem I —— Compatiblity with Sigma.m

Problem I

Sigma.m can only deal with the cases when the upper bound of the
inner sum is the index of the next outer sum.

. . . fk+1 (ik+1)

ik+1∑
ik=1

fk (ik) . . . X

. . . fk+1 (ik+1)

ik+1−1∑
ik=1

fk (ik) . . . ×

Solution

Shift the sum index, ACCORDINGLY.
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Problem II——Root of Unity

Recall:

Proj (m, n, d) =
1

d

d∑
k=1

exp

(
2πik

m − n

d

)
=

{
0 m 6≡ n (mod d)

1 m ≡ n (mod d)
.

Example {
Proj (m, n, 1) ≡ 1

Proj (m, n, 2) = (−1)m+(−1)n

2

When d ≥ 3, root of unity is inevitable.

Example

Proj (6, 2, 3) =
1

3

(
1 + e−

2πi
3 + e

2πi
3

)
Mathematica

= 0
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Conclusion

Steps of the Algorithm
Problems.

Problem II——Root of Unity (Continued)

FACT

There is no other substitutions for the projector function.

Solutions/Compromise

1 Try to make ∆0 as small as possible. (∆0 = 1 or ∆0 = 2)

2 “Replacement ν 7→ ∆0ν”. (Conditionally)

We can only make such replacement for the outermost sum.
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Conclusion

Steps of the Algorithm
Problems.

Problem III——Poles

FACT

It is very common when converting sums into nested sums.

Example

[Created by PFD]

S (ν) =
ν∑

x=1

1

(ν + x) (x + 1)
⇒ S (1) =

1

4

S̄ (ν) =
ν∑

x=1

[
1

(ν − 1) (ν + x)
−

1

(ν − 1) (x + 1)

]

=
1

ν − 1

ν−1∑
x=0

[
1

x + 2
+

1

x + 1
−

1

2x + 1
−

1

2x + 2

]

S̄ (1) =
0

0
= ”Indetermined”
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Problems.

Problem III——Poles (Continued)

Example

[Created by Shifting (Crossing the Boundary)]

S (ν) =
ν∑

x=1

x−1∑
z=1

1

(ν + x + 1) (x + z)
.

Note:
∆0 = 1,∆x = ∆1 = −1,∆z = ∆2 = 1.

Fact

While computing ∆S (ν), the following sum appears

ν∑
x=1

(x−1)+(−1)−1∑
z=(x−1)+1

1

(ν + x + 1) (x + z)
= −

ν∑
x=1

[
1

(ν + x + 1) (2x − 1)
+

1

(ν + x + 1) (2x − 2)

]
,
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Conclusion

Steps of the Algorithm
Problems.

Dealing with Poles—by Authors

Remark

In the paper, during Step II, when poles/divergence terms are
created, they introduce regularization parameter, by ik 7→ ik+δk .
Also, the paper talks about Step III, evaluation, which one can
eventually send δk → 0.

Example

∑
x≥y≥z≥1

1

2x (x − y) (x + z)
7→

∑
x≥y≥z≥1

1

2x (x − y + δ) (x + z)
.

FACT

The speed will be slowed down dramatically by introducing more
parameters, which violates our original purpose for implementation.
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Conclusion

Steps of the Algorithm
Problems.

Dealing with Poles—Modifying the Starting Point

[Q]:Recall the expression

S (ν) = λ
ν

∆0

∆0−1∑
µ0=0

Proj (ν, µ0,∆0)

λ− µ0
∆0 S (µ0) +

ν−1∑
µ=0

Proj (µ, µ0,∆0) ∆S (µ)λ
−µ+∆0

∆0

 ,
and suppose ∆S (µ) has a pole at µ = 1. How to deal with it?
RECALL

f (101) = f (2) +
32∑
k=0

∆f (3k + 2)

= f (5) +
32∑
k=1

∆f (3k + 2)

= . . .
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Steps of the Algorithm
Problems.

Dealing with Poles—Modifying the Starting Point
(Continued)

KEY

Find k ∈ N, s.t. k ·∆0 > 1(the largest pole of ∆S (µ) & S (ν0)).

Corresponding Expression

S (ν) = λ
ν

∆0

∆0−1∑
µ0=0

Proj (ν, µ0,∆0)

λ− µ0
∆0

−k
S (µ0 + k · ∆0) +

ν−1∑
µ=k∆0

Proj (µ, µ0,∆0) ∆S (µ)λ
−µ+∆0

∆0
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Steps of the Algorithm
Problems.

Dealing with Poles—Splitting the Sums

Example

S (ν) :=
ν∑

x=1

x∑
y=1

1

(x + y) (y + 1)

=
ν∑

x=1

x∑
y=1

[
1

(x − 1) (x + y)
− 1

(x − 1) (y + 1)

]


S1 (ν) =
ν∑

x=1

x∑
y=1

1
(x+y)(y+1) |x=1 = 1

4

S2 (ν) =
ν∑

x=2

x∑
y=1

1
(x+y)(y+1)
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Dealing with Poles—Splitting the Sums

Example

S (ν) :=
ν∑

x=1

x∑
y=1

1

(x + y) (y + 1)

=
ν∑

x=1

x∑
y=1

[
1

(x − 1) (x + y)
− 1

(x − 1) (y + 1)

]


S1 (ν) =
ν∑

x=1

x∑
y=1

1
(x+y)(y+1) |x=1 = 1

4

S2 (ν) =
ν∑

x=2

x∑
y=1

1
(x+y)(y+1)
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Conclusion

Conclusions/Experience

1 This algorithm works faster than the usual/general method of
Sigma.m.

2 Root of unity is inherited from the algorithm. It seems to be
impossible to avoid.

3 Poles are very common while converting sums (creating
telescoping). And the poles created by PFD is easier to deal
with comparing to those from shifting.

4 Adding regularization parameters will slow down this
algorithm dramatically.
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Conclusion

THE END

Thank you!
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