Introduction to Zonal Polynomials

Lin Jiu

Dalhousie University Number Theory Seminar

Jan. 22, 2018

$$_{s}F_{t}\left(\begin{matrix} a_{1},\ldots,a_{s}\\ b_{1},\ldots,b_{t}\end{matrix}:z\right):=\sum_{n=0}^{\infty}\frac{\left(a_{1}\right)_{n}\cdots\left(a_{s}\right)_{n}}{\left(b_{1}\right)_{n}\cdots\left(b_{t}\right)_{n}}\cdot\frac{z^{n}}{n!},$$

$${}_sF_t\left(\begin{matrix} a_1,\dots,a_s\\b_1,\dots,b_t \end{matrix}:z\right):=\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_s)_n}{(b_1)_n\cdots(b_t)_n}\cdot\frac{z^n}{n!},$$
 where $(a)_k=a(a+1)\cdots(a+k-1).$

$${}_sF_t\left(\begin{matrix} a_1,\dots,a_s\\b_1,\dots,b_t \end{matrix}:z\right):=\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_s)_n}{(b_1)_n\cdots(b_t)_n}\cdot\frac{z^n}{n!},$$
 where $(a)_k=a(a+1)\cdots(a+k-1).$ Examples

Examples

▶ ${}_{2}F_{1}\left(\begin{smallmatrix} a,b \\ c \end{smallmatrix} : z \right)$ is the Gaussian hypergeometric function s. t.

$$z(1-z)\frac{\mathrm{d}^2w}{\mathrm{d}z^2}+(c-(a+b+1)z)\frac{\mathrm{d}w}{\mathrm{d}z}-abw=0.$$

$${}_sF_t\left(\begin{matrix} a_1,\dots,a_s\\b_1,\dots,b_t \end{matrix}:z\right):=\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_s)_n}{(b_1)_n\cdots(b_t)_n}\cdot\frac{z^n}{n!},$$
 where $(a)_k=a(a+1)\cdots(a+k-1).$ Examples

 $ightharpoonup _2F_1\left(egin{array}{c} a,b \\ c \end{array}:z\right)$ is the Gaussian hypergeometric function s. t.

$$z(1-z)\frac{\mathrm{d}^2w}{\mathrm{d}z^2}+(c-(a+b+1)z)\frac{\mathrm{d}w}{\mathrm{d}z}-abw=0.$$

▶
$$\log(1+z) = z_2 F_1 \begin{pmatrix} 1,1 \\ 2 \end{pmatrix}$$
: $-z$

$${}_sF_t\left(\begin{matrix}a_1,\ldots,a_s\\b_1,\ldots,b_t\end{matrix}:z\right):=\sum_{n=0}^\infty\frac{(a_1)_n\cdots(a_s)_n}{(b_1)_n\cdots(b_t)_n}\cdot\frac{z^n}{n!},$$

where $(a)_k = a(a+1)\cdots(a+k-1)$. Examples

• ${}_{2}F_{1}\left({a,b\atop c}:z\right)$ is the Gaussian hypergeometric function s. t.

$$z(1-z)\frac{\mathrm{d}^2w}{\mathrm{d}z^2}+(c-(a+b+1)z)\frac{\mathrm{d}w}{\mathrm{d}z}-abw=0.$$

- $\blacktriangleright \log (1+z) = z_2 F_1 \left(\frac{1,1}{2} : -z \right)$
- $e^z = {}_0F_0(:z)$

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_{s}F_{t}\left(egin{aligned} a_{1},\ldots,a_{s}\ b_{1},\ldots,b_{t} \end{aligned}: oldsymbol{Y}
ight):=\sum_{n=0}^{\infty}\sum_{\substack{p\in\mathcal{P}_{n}\ (b_{1})_{p}\cdots(b_{t})_{p}}} rac{(a_{1})_{p}\cdots(a_{s})_{p}}{(b_{1})_{p}\cdots(b_{t})_{p}}\cdotrac{\mathcal{C}_{p}\left(Y
ight)}{n!},$$

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_{s}F_{t}\left(egin{aligned} a_{1},\ldots,a_{s}\ b_{1},\ldots,b_{t} \end{aligned}: oldsymbol{Y}
ight):=\sum_{n=0}^{\infty}\sum_{\substack{p\in\mathcal{P}_{p}\ (b_{1})_{p}\cdots(b_{t})_{p}}} rac{(a_{1})_{p}\cdots(a_{s})_{p}}{(b_{1})_{p}\cdots(b_{t})_{p}}\cdotrac{\mathcal{C}_{p}\left(Y
ight)}{n!},$$

where,

 $ightharpoonup \mathcal{P}_n$ is the set of all partitions of n

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_{s}F_{t}\left(egin{aligned} a_{1},\ldots,a_{s}\ b_{1},\ldots,b_{t} \end{aligned}: oldsymbol{Y}
ight):=\sum_{n=0}^{\infty}\sum_{oldsymbol{p}\in\mathcal{P}_{n}}rac{(a_{1})_{p}\cdots(a_{s})_{p}}{(b_{1})_{p}\cdots(b_{t})_{p}}\cdotrac{\mathcal{C}_{p}\left(Y
ight)}{n!},$$

where,

▶ \mathcal{P}_n is the set of all partitions of n and a partition of n is a $(p_1, \ldots, p_l) \in \mathbb{N}^l$ such that $p_1 \ge \cdots \ge p_l > 0$ and $p_1 + \cdots + p_l = n(=|p|)$,

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_sF_t\left(\begin{matrix} a_1,\ldots,a_s\\b_1,\ldots,b_t \end{matrix}: \begin{matrix} Y \end{matrix}\right) := \sum_{n=0}^{\infty} \sum_{\substack{p \in \mathcal{P}_n\\p\in \mathcal{P}_n}} \frac{(a_1)_p\cdots(a_s)_p}{(b_1)_p\cdots(b_t)_p} \cdot \frac{\mathcal{C}_p\left(Y\right)}{n!},$$

where,

▶ \mathcal{P}_n is the set of all partitions of n and a partition of n is a $(p_1, \ldots, p_l) \in \mathbb{N}^l$ such that $p_1 \ge \cdots \ge p_l > 0$ and $p_1 + \cdots + p_l = n(=|p|)$, e.g., $(5, 2, 2, 1) \in \mathcal{P}_{10}$;

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_sF_t\left(\begin{matrix} a_1,\dots,a_s\\b_1,\dots,b_t \end{matrix}: \begin{matrix} Y \end{matrix}\right) := \sum_{n=0}^{\infty} \sum_{\substack{p \in \mathcal{P}_n\\p\in \mathcal{P}_n}} \frac{(a_1)_p\cdots(a_s)_p}{(b_1)_p\cdots(b_t)_p} \cdot \frac{\mathcal{C}_p\left(Y\right)}{n!},$$

where,

- ▶ \mathcal{P}_n is the set of all partitions of n and a partition of n is a $(p_1, \ldots, p_l) \in \mathbb{N}^l$ such that $p_1 \ge \cdots \ge p_l > 0$ and $p_1 + \cdots + p_l = n(=|p|)$, e.g., $(5, 2, 2, 1) \in \mathcal{P}_{10}$;
- ▶ for $p = (p_1, ..., p_l) \in \mathcal{P}_n$, $(a)_p = \prod_{i=1}^l (a \frac{i-1}{2})_{p_i}$;

Given an $m \times m$ symmetric (postive definite) matrix Y,

$${}_sF_t\left(\begin{matrix} a_1,\dots,a_s\\b_1,\dots,b_t \end{matrix}: \begin{matrix} Y \end{matrix}\right) := \sum_{n=0}^{\infty} \sum_{\substack{p \in \mathcal{P}_n\\p\in\mathcal{P}_n}} \frac{(a_1)_p\cdots(a_s)_p}{(b_1)_p\cdots(b_t)_p} \cdot \frac{\mathcal{C}_p\left(Y\right)}{n!},$$

where,

- ▶ \mathcal{P}_n is the set of all partitions of n and a partition of n is a $(p_1, \ldots, p_l) \in \mathbb{N}^l$ such that $p_1 \ge \cdots \ge p_l > 0$ and $p_1 + \cdots + p_l = n (= |p|)$, e.g., $(5, 2, 2, 1) \in \mathcal{P}_{10}$;
- for $p = (p_1, ..., p_l) \in \mathcal{P}_n$, $(a)_p = \prod_{i=1}^l (a \frac{i-1}{2})_{p_i}$;
- ▶ $C_p(Y)$ is (*C-normalization of*) zonal polynomial, which is homogeneous, symmetric, polynomial of degree n = |p|, in the eigenvalues of Y.

 $C_p(Y)$

$$C_{p}(Y)$$

▶ It is defined on eigenvalues of *Y*

$$C_p(Y)$$

▶ It is defined on eigenvalues of *Y*

$$C_p(y_1,\ldots,y_m)$$

$$C_{p}(Y)$$

It is defined on eigenvalues of Y

$$C_p(y_1,\ldots,y_m)$$

▶ For $p = (p_1, ..., p_l)$, if m < l, (will see why later)

$$C_{p}(Y) = C_{p}(y_{1},\ldots,y_{m},0,\ldots,0)$$

$$C_p(Y)$$

It is defined on eigenvalues of Y

$$C_p(y_1,\ldots,y_m)$$

▶ For $p = (p_1, ..., p_l)$, if m < l, (will see why later)

$$C_{p}(Y) = C_{p}(y_{1},\ldots,y_{m},0,\ldots,0)$$

An important fact

$$\sum_{p\in\mathcal{P}_n}\mathcal{C}_p(Y)=(\operatorname{tr} Y)^n=(y_1+\cdots+y_m)^n.$$

$${}_0F_0\left(\ : Y\right) = \sum_{n=0}^{\infty} \sum_{p \in \mathcal{P}_n} \cdot \frac{\mathcal{C}_p\left(Y\right)}{n!} = \sum_{n=0}^{\infty} \frac{\left(\operatorname{tr} Y\right)^n}{n!} = e^{\operatorname{tr} Y}$$

$${}_0F_0\left(\ : Y\right) = \sum_{n=0}^{\infty} \sum_{p \in \mathcal{P}_n} \cdot \frac{\mathcal{C}_p\left(Y\right)}{n!} = \sum_{n=0}^{\infty} \frac{\left(\operatorname{tr} Y\right)^n}{n!} = e^{\operatorname{tr} Y}$$

$$e^z = {}_0F_0(:z)$$

$$_{0}F_{0}\left(\ : Y
ight) = \sum_{n=0}^{\infty} \sum_{p \in \mathcal{P}_{n}} \cdot \frac{\mathcal{C}_{p}\left(Y
ight)}{n!} = \sum_{n=0}^{\infty} \frac{\left(\operatorname{tr} Y \right)^{n}}{n!} = e^{\operatorname{tr} Y}$$

$$e^z = {}_0F_0(:z)$$

$$_1F_0\left({\stackrel{a}{\cdot}} : z \right) = (1-z)^{-a}$$

$$_1F_0\left({}^a:Y\right)=\det(I-A)^{-a}$$

$$\mathcal{C}_{p}\left(Y\right)=d_{p}\underline{\mathcal{Y}_{p}\left(Y\right)}, \text{ where } d_{p}=\dfrac{\prod\limits_{i< j}\left(2p_{i}-2p_{j}-i+j
ight)}{\prod\limits_{i=1}^{l}\left(2p_{i}+l-i
ight)!}\cdot\dfrac{2^{n}n!}{(2n)!}.$$

$$\mathcal{C}_{p}\left(Y\right)=d_{p}\underline{\mathcal{Y}_{p}\left(Y\right)}, \text{ where } d_{p}=\dfrac{\prod\limits_{i< j}\left(2p_{i}-2p_{j}-i+j
ight)}{\prod\limits_{i=1}^{l}\left(2p_{i}+l-i
ight)!}\cdot\dfrac{2^{n}n!}{(2n)!}.$$

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$

$$\mathcal{C}_{p}\left(Y\right) = d_{p} \underbrace{\mathcal{Y}_{p}\left(Y\right)}_{l}$$
, where $d_{p} = \frac{\prod\limits_{i < j} \left(2p_{i} - 2p_{j} - i + j\right)}{\prod\limits_{i = 1}^{l} \left(2p_{i} + l - i\right)!} \cdot \frac{2^{n}n!}{(2n)!}$.

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n :

$$\mathcal{C}_{p}\left(Y
ight) = d_{p} \underbrace{\mathcal{Y}_{p}\left(Y
ight)}_{, \text{ where } d_{p} = rac{\prod\limits_{i < j}^{l}\left(2p_{i} - 2p_{j} - i + j
ight)}{\prod\limits_{i = 1}^{l}\left(2p_{i} + l - i
ight)!} \cdot rac{2^{n}n!}{(2n)!}.$$

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n : define the elementary symmetric polynomial

$$u_r(x_1,\ldots,x_m):=\sum_{i_1<\cdots< i_r}x_{i_1}\cdots x_{i_r}.$$

Then, for
$$p = (p_1, \dots, p_l) \in \mathcal{P}_n$$

$$\mathcal{U}_p := u_1^{p_1 - p_2} u_2^{p_2 - p_3} \cdots u_{l-1}^{p_{l-1} - p_l} u_l^{p_l(-0)},$$

$$\mathcal{C}_{p}\left(Y\right)=d_{p}\underline{\mathcal{Y}_{p}\left(Y\right)}, \text{ where } d_{p}=\dfrac{\prod\limits_{i< j}\left(2p_{i}-2p_{j}-i+j
ight)}{\prod\limits_{i=1}^{l}\left(2p_{i}+l-i
ight)!}\cdot\dfrac{2^{n}n!}{(2n)!}.$$

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n : define the elementary symmetric polynomial

$$u_r(x_1,\ldots,x_m):=\sum_{i_1<\cdots< i_r}x_{i_1}\cdots x_{i_r}.$$

Then, for
$$p=(p_1,\ldots,p_l)\in \mathcal{P}_n$$

$$\mathcal{U}_p:=u_1^{p_1-p_2}u_2^{p_2-p_3}\cdots u_{l-1}^{p_{l-1}-p_l}u_l^{p_l(-0)},$$

 $ightharpoonup deg \mathcal{U}_p =$

$$\mathcal{C}_{p}\left(Y
ight)=d_{p}\underline{\mathcal{Y}_{p}\left(Y
ight)}, ext{ where } d_{p}=rac{\prod\limits_{i=1}^{l}\left(2p_{i}-2p_{j}-i+j
ight)}{\prod\limits_{i=1}^{l}\left(2p_{i}+l-i
ight)!}\cdotrac{2^{n}n!}{(2n)!}.$$

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n : define the elementary symmetric polynomial

$$u_r(x_1,\ldots,x_m):=\sum_{i_1<\cdots< i_r}x_{i_1}\cdots x_{i_r}.$$

Then, for
$$p=(p_1,\ldots,p_l)\in\mathcal{P}_n$$

$$\mathcal{U}_p := u_1^{p_1-p_2} u_2^{p_2-p_3} \cdots u_{l-1}^{p_{l-1}-p_l} u_l^{p_l(-0)},$$

• $\deg \mathcal{U}_p = p_1 - p_2 + 2(p_2 - p_3) + \cdots + lp_l$

$$\mathcal{C}_{p}(Y) = d_{p} \underbrace{\mathcal{Y}_{p}(Y)}_{l}$$
, where $d_{p} = \frac{\prod\limits_{i < j} \left(2p_{i} - 2p_{j} - i + j\right)}{\prod\limits_{i = 1}^{l} \left(2p_{i} + l - i\right)!} \cdot \frac{2^{n} n!}{(2n)!}$.

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n : define the elementary symmetric polynomial

$$u_r(x_1,\ldots,x_m):=\sum_{i_1<\cdots< i_r}x_{i_1}\cdots x_{i_r}.$$

Then, for
$$p=(p_1,\ldots,p_l)\in\mathcal{P}_n$$

$$\mathcal{U}_p := u_1^{p_1-p_2} u_2^{p_2-p_3} \cdots u_{l-1}^{p_{l-1}-p_l} u_l^{p_l(-0)},$$

$$\mathcal{C}_{p}\left(Y\right) = d_{p} \underbrace{\mathcal{Y}_{p}\left(Y\right)}_{l}$$
, where $d_{p} = \frac{\prod\limits_{i < j} \left(2p_{i} - 2p_{j} - i + j\right)}{\prod\limits_{i = 1}^{l} \left(2p_{i} + l - i\right)!} \cdot \frac{2^{n} n!}{(2n)!}$.

Define a linear space

 $V_n := \{f : f \text{ is homogeneous, symmetric, of degree } n, \text{ or } f \equiv 0\}$ where f is defined on eigenvalues of matrices.

▶ Basis for V_n : define the elementary symmetric polynomial

$$u_r(x_1,\ldots,x_m):=\sum_{i_1<\cdots< i_r}x_{i_1}\cdots x_{i_r}.$$

Then, for $p = (p_1, \dots, p_l) \in \mathcal{P}_n$

$$\mathcal{U}_p := u_1^{p_1-p_2}u_2^{p_2-p_3}\cdots u_{l-1}^{p_{l-1}-p_l}u_l^{p_l(-0)},$$

- $\mathcal{U} := \left(\mathcal{U}_{(n)}, \mathcal{U}_{(n-1,1)}, \dots, \mathcal{U}_{(1,1,\dots,1)}\right)^T \text{ forms a basis of } V_n.$

$$\mathcal{Y} = egin{pmatrix} \mathcal{Y}_{(n)} \ \mathcal{Y}_{(n-1,1)} \ dots \ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi egin{pmatrix} \mathcal{U}_{(n)} \ \mathcal{U}_{(n-1,1)} \ dots \ \mathcal{U}_{(1^n)} \end{pmatrix}$$

$$\mathcal{Y} = egin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi egin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.

$$\mathcal{Y} = \begin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi \begin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

- ▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.
- ▶ Define linear transform $\tau_{\nu}: V_n \longrightarrow V_n$ by

$$(\tau_{\nu}(\mathcal{U}_{p}))(A) :=$$

$$\mathcal{Y} = \begin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi \begin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

- ▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.
- ▶ Define linear transform $\tau_{\nu}: V_n \longrightarrow V_n$ by

$$\left(au_{
u}\left(\mathcal{U}_{p}
ight)
ight)\left(A
ight):=\mathbb{E}_{W}\left[\mathcal{U}_{p}\left(AW
ight)
ight] \ ext{for} \ W\sim W\left(I_{k},
u
ight).$$

$$\mathcal{Y} = \begin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi \begin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

- ▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.
- ▶ Define linear transform $\tau_{\nu}: V_n \longrightarrow V_n$ by

$$\left(au_{
u}\left(\mathcal{U}_{p}
ight)
ight)\left(A
ight):=\mathbb{E}_{W}\left[\mathcal{U}_{p}\left(AW
ight)
ight] \ ext{for} \ W\sim W\left(I_{k},
u
ight).$$

Then, a lemma (due to basis) shows $\tau_{\nu}\mathcal{U} = T_{\nu}\mathcal{U}$.

$$\mathcal{Y} = \begin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi \begin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

- ▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.
- ▶ Define linear transform $\tau_{\nu}: V_n \longrightarrow V_n$ by

$$\left(au_{
u}\left(\mathcal{U}_{p}
ight)
ight)\left(A
ight):=\mathbb{E}_{W}\left[\mathcal{U}_{p}\left(AW
ight)
ight] \ ext{for} \ W\sim W\left(I_{k},
u
ight).$$

Then, a lemma (due to basis) shows $\tau_{\nu}\mathcal{U} = T_{\nu}\mathcal{U}$.

▶ $Z_1, \ldots, Z_k \sim \mathcal{N}(0, 1)$ are independent (i. i. d.), then $Q := Z_1 + \cdots + Z_k \sim \chi_k^2$;

$$\mathcal{Y} = \begin{pmatrix} \mathcal{Y}_{(n)} \\ \mathcal{Y}_{(n-1,1)} \\ \vdots \\ \mathcal{Y}_{(1^n)} \end{pmatrix} = \Xi \mathcal{U} = \Xi \begin{pmatrix} \mathcal{U}_{(n)} \\ \mathcal{U}_{(n-1,1)} \\ \vdots \\ \mathcal{U}_{(1^n)} \end{pmatrix}$$

- ▶ Ξ is a matrix: nonsingular, upper triangular, such that $T_{\nu} = \Xi_{(\nu)}^{-1} \Lambda_{\nu} \Xi_{(\nu)}$, where T_{ν} is related to Wishart distribution and Λ_{ν} is its diagonal matrix.
- ▶ Define linear transform $\tau_{\nu}: V_n \longrightarrow V_n$ by

$$\left(au_{
u}\left(\mathcal{U}_{p}
ight)
ight)\left(A
ight):=\mathbb{E}_{W}\left[\mathcal{U}_{p}\left(AW
ight)
ight] \ ext{for} \ W\sim W\left(I_{k},
u
ight).$$

Then, a lemma (due to basis) shows $\tau_{\nu}\mathcal{U} = T_{\nu}\mathcal{U}$.

- Let $X_{\nu \times m}$ be such that each row is independently drawn from an m-variate normal distribution,

$$(x_i^1,\ldots,x_i^m) \sim \mathcal{N}_m(0,V) \Rightarrow S = X^T X \sim W_m(V,\nu)$$

and ν is called the degree of freedom.

$$\mathcal{M}_{\lambda}\left(y_{1},\ldots,y_{m}\right)=\sum_{\substack{i_{1},\ldots,i_{l}\\\text{distinct terms}}}y_{i_{1}}^{\lambda_{1}}\cdots y_{i_{l}}^{\lambda_{l}}=y_{1}^{\lambda_{1}}\cdots y_{l}^{\lambda_{l}}+\text{symmetric terms}.$$

$$\mathcal{M}_{\lambda}\left(y_{1},\ldots,y_{m}\right) = \sum_{\substack{i_{1},\ldots,i_{l}\\ \text{distinct terms}}} y_{i_{1}}^{\lambda_{1}}\cdots y_{i_{l}}^{\lambda_{l}} = y_{1}^{\lambda_{1}}\cdots y_{l}^{\lambda_{l}} + \text{symmetric terms}.$$

1.

$$\mathcal{M}_{(1)}(Y)=y_1+\cdots+y_m;$$

2.

$$\mathcal{M}_{(2)}(Y) = y_1^2 + \cdots + y_m^2;$$

3.

$$\mathcal{M}_{(1,1)}(Y) = \sum_{i < j} y_i y_j;$$

4.

$$\mathcal{M}_{(2,1)}(Y) = \sum_{i,j} y_i^2 y_j.$$

For
$$p=(p_1,\ldots,p_\ell)$$
 and $\lambda=(\lambda_1,\ldots,\lambda_m)$,
$$\mathcal{C}_p\left(Y\right)=\sum_{\lambda\leq p}c_{p,\lambda}M_\lambda\left(Y\right).$$

For
$$p=(p_1,\ldots,p_\ell)$$
 and $\lambda=(\lambda_1,\ldots,\lambda_m)$,

$$C_{p}(Y) = \sum_{\lambda \leq p} c_{p,\lambda} M_{\lambda}(Y).$$

for some constants $c_{p,\lambda}$

$$c_{p,\lambda} = \sum_{\lambda < \mu \leq p} \frac{(\lambda_i + t) - (\lambda_j - t)}{\rho_p - \rho_\lambda} c_{p,\mu}.$$

Here,

$$\rho_p := \sum_{j=1}^{\ell} p_i \left(p_i - j \right)$$

and for $\lambda = (\lambda_1, \dots, \lambda_l)$, the sum is over all $\mu = (\lambda_1, \dots, \lambda_i + t, \dots, \lambda_j - t, \dots, \lambda_l)$ for $t = 1, \dots, \lambda_j$ such that by rearranging tuple μ in a descending order, it lies as $\lambda < \mu \le p$.

► *n* = 5

$p ackslash \lambda$	(5)	(4, 1)	(3, 2)	(3, 1, 1)	(2, 2, 1)	(2,1,1,1)	(1, 1, 1, 1, 1)
(5)	1	<u>5</u>	10 21 8	20 63 46	$\frac{2}{7}$	$\frac{4}{21}$	<u>8</u> 63
(4, 1)	0	$\frac{40}{9}$	3	46 9 32	4	14 3	40 90
(3, 2)	0	0	48 7	32 7	176 21 20	<u>64</u> .7.	7
(3, 1, 1)	0	0	0	10	3	130 7	<u>200</u> 7
(2, 2, 1)	0	0	0	0	$\frac{32}{3}$	16	32
(2, 1, 1, 1)	0	0	0	0	0	<u>80</u> 7	800 21
(1, 1, 1, 1, 1)	0	0	0	0	0	0	$\frac{16}{3}$

ightharpoonup n = 5

$$\mathcal{C}_{(1,1)}(a,b,c) = \frac{4}{3}(ab+bc+ac)$$
 $\mathcal{C}_{(2)}(a,b,c) = a^2 + b^2 + c^2 + \frac{2}{3}(ab+bc+ac)$


```
sage: Load('Zonal.sage')
sage: wr('a','b','c')
(a, b, c)
sage: MZonal([2,1],[a,b,c])
a^2*b + a*b^2 + a*2*c + b^2*c + a*c^2 + b*c^2
sage: CZonal([2,1],[a,b,c])
12/5*a^2*b + 12/5*a*b^2 + 12/5*a^2*c + 18/5*a*b*c + 12/5*b^2*c + 12/5*a*c^2 + 12/5*b*c^2
sage: coeffi([2,1],[1,1,1])
18/5
sage:
```

Recall in \mathbb{R}^3 , the following operators:

Recall in \mathbb{R}^3 , the following operators:

gradient

Recall in \mathbb{R}^3 , the following operators:

gradient

$$\nabla f := (f_x, f_y, f_z);$$

Recall in \mathbb{R}^3 , the following operators:

gradient

$$\nabla f := (f_x, f_y, f_z);$$

divergence

$$\mathrm{div}X = \frac{\partial X}{\partial x} + \frac{\partial X}{\partial y} + \frac{\partial X}{\partial z};$$

Recall in \mathbb{R}^3 , the following operators:

gradient

$$\nabla f := (f_x, f_y, f_z);$$

divergence

$$\mathrm{div}X = \frac{\partial X}{\partial x} + \frac{\partial X}{\partial y} + \frac{\partial X}{\partial z};$$

Laplace

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (\operatorname{div} \bullet \nabla) f;$$

Recall in \mathbb{R}^3 , the following operators:

gradient

$$\nabla f := (f_x, f_y, f_z);$$

divergence

$$\mathrm{div}X = \frac{\partial X}{\partial x} + \frac{\partial X}{\partial y} + \frac{\partial X}{\partial z};$$

Laplace

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (\operatorname{div} \bullet \nabla) f;$$

On a Riemannian manifold (M, g), the Laplace-Beltrami operator on $f \in C^{\infty}(M)$ is given by

$$\Delta f := (\operatorname{div} \bullet \operatorname{grad}) f = \frac{1}{\sqrt{G}} \partial_k \left(g^{ik} \sqrt{G} \partial_i f \right).$$

Definition 2 Let M = SPD(m)

Let M = SPD(m) and associate the canonical metric.

Let $M = \operatorname{SPD}(m)$ and associate the canonical metric. Then, for $Y \in M$ with eigenvalues y_1, \ldots, y_m :

$$\Delta = \sum_{i=1}^{m} \left(y_i^2 \frac{\partial^2}{\partial y_i^2} - \frac{m-3}{2} y_i \frac{\partial}{\partial y_i} + \sum_{j=1, j \neq i}^{n} \frac{y_i^2}{y_i - y_j} \frac{\partial}{\partial y_i} \right).$$

Let $M = \operatorname{SPD}(m)$ and associate the canonical metric. Then, for $Y \in M$ with eigenvalues y_1, \ldots, y_m :

$$\Delta = \sum_{i=1}^{m} \left(y_i^2 \frac{\partial^2}{\partial y_i^2} - \frac{m-3}{2} y_i \frac{\partial}{\partial y_i} + \sum_{j=1, j \neq i}^{n} \frac{y_i^2}{y_i - y_j} \frac{\partial}{\partial y_i} \right).$$

Euler's operator $\sum_{i=1}^{m} y_i \frac{\partial}{\partial y_i}$

Let $M = \operatorname{SPD}(m)$ and associate the canonical metric. Then, for $Y \in M$ with eigenvalues y_1, \ldots, y_m :

$$\Delta = \sum_{i=1}^{m} \left(y_i^2 \frac{\partial^2}{\partial y_i^2} - \frac{m-3}{2} y_i \frac{\partial}{\partial y_i} + \sum_{j=1, j \neq i}^{n} \frac{y_i^2}{y_i - y_j} \frac{\partial}{\partial y_i} \right).$$

Euler's operator $\sum_{i=1}^{m} y_i \frac{\partial}{\partial y_i}$

Zonal polynomial $C_p(y_1,\ldots,y_m)$ are eigenfunctions of Δ_Y , defined by

$$\Delta_Y := \sum_{i=1}^m \left(y_i^2 \frac{\partial^2}{\partial y_i^2} + \sum_{j=1, j \neq i}^n \frac{y_i^2}{y_i - y_j} \frac{\partial}{\partial y_i} \right).$$

In particular

$$\Delta_{Y}\mathcal{C}_{p}\left(Y\right)=\left(
ho_{p}+m\left(I-1
ight)\right)\mathcal{C}_{\lambda}\left(Y
ight)$$
, where $ho_{p}:=\sum_{i=1}^{I}p_{i}\left(p_{i}-1
ight)$.

Consider G = GL(m) and a representation of linear space V_n :

$$g \in GL(m): V_n \rightarrow V_n$$

$$\varphi(Y) \mapsto \varphi\left(g^{-1}Y\left(g^{-1}\right)^T\right)$$

Consider G = GL(m) and a representation of linear space V_n :

$$g \in GL(m): V_n \rightarrow V_n$$

$$\varphi(Y) \mapsto \varphi\left(g^{-1}Y\left(g^{-1}\right)^T\right)$$

As a representation, the linear space can be decomposed into invariant subspaces:

$$V_n = \bigoplus_{p \in \mathcal{P}_n} V_p.$$

Consider G = GL(m) and a representation of linear space V_n :

$$g \in GL(m): V_n \rightarrow V_n$$

$$\varphi(Y) \mapsto \varphi\left(g^{-1}Y\left(g^{-1}\right)^T\right)$$

As a representation, the linear space can be decomposed into invariant subspaces:

$$V_n = \bigoplus_{p \in \mathcal{P}_n} V_p$$
.

Now, note that $(\operatorname{tr} Y)^n \in V_n$. The projection

$$(\operatorname{tr} Y)^n \Big|_{V_p} = \mathcal{C}_p(Y).$$

Macdonald polynomials $P_{\lambda}(x; t, q)$ are a family of orthogonal polynomials in several variables, introduced by Macdonald (1987).

Macdonald polynomials $P_{\lambda}(x; t, q)$ are a family of orthogonal polynomials in several variables, introduced by Macdonald (1987).

First fix some notation:

- · R is a finite root system in a real vector space V.
- · R+ is a choice of positive roots, to which corresponds a positive Weyl chamber.
- . W is the Weyl group of R.
- . Q is the root lattice of R (the lattice spanned by the roots).
- P is the weight lattice of R (containing Q).
- ullet An ordering on the weights: $\mu \leq \lambda$ if and only if $\lambda \mu$ is a nonnegative linear combination of simple roots.
- P+ is the set of dominant weights: the elements of P in the positive Weyl chamber.
- \(\text{o} \) is the Weyl vector: half the sum of the positive roots; this is a special element of P⁺ in the interior of the positive Weyl chamber.
- F is a field of characteristic 0, usually the rational numbers.
- A = F(P) is the group algebra of P, with a basis of elements written e^{λ} for $\lambda \in P$.
- If $f = e^{\lambda}$, then \tilde{f} means $e^{-\lambda}$, and this is extended by linearity to the whole group algebra.
- $m_{ij} = \Sigma_{\lambda \in W_i} e^{\lambda}$ is an orbit sum; these elements form a basis for the subalgebra A^W of elements fixed by W.
- ullet $(a;q)_{\infty}=\prod_{r>0}(1-aq^r)$, the infinite q-Pochhammer symbol.
- $ullet \Delta = \prod_{lpha \in R} rac{(e^lpha;q)_\infty}{(te^lpha;q)_\infty}.$
- ⟨f, g⟩ = (constant term of fḡΔ)/|W| is the inner product of two elements of A, at least when t is a positive integer
 power of q.

The **Macdonald polynomials** P_{λ} for $\lambda \in P^+$ are uniquely defined by the following two conditions:

$$P_{\lambda} = \sum_{\mu \leq \lambda} u_{\lambda\mu} m_{\mu}$$
 where $u_{\lambda\mu}$ is a rational function of q and t with $u_{\lambda\lambda}$ = 1;

 P_{λ} and P_{μ} are orthogonal if $\lambda < \mu$.

If we put $t = q\alpha$ and let q tend to 1 the Macdonald polynomials become Jack polynomials (with further conditions)

Definition [edit]

The Jack function $J_{\kappa}^{(\alpha)}(x_1,x_2,\ldots)$ of integer partition κ , parameter α , and indefinitely many arguments x_1,x_2,\ldots , can be recursively defined as follows:

For m=1

$$J_k^{(lpha)}(x_1)=x_1^k(1+lpha)\cdots(1+(k-1)lpha)$$

For *m*>1

$$J_{\kappa}^{(lpha)}(x_1,x_2,\ldots,x_m) = \sum_{\mu} J_{\mu}^{(lpha)}(x_1,x_2,\ldots,x_{m-1}) x_m^{|\kappa/\mu|} eta_{\kappa\mu},$$

where the summation is over all partitions μ such that the **skew partition** κ/μ is a **horizontal strip**, namely

$$\begin{split} \kappa_1 \geq \mu_1 \geq \kappa_2 \geq \mu_2 \geq \cdots \geq \kappa_{n-1} \geq \mu_{n-1} \geq \kappa_n \ (\mu_n \text{ must be zero or otherwise } J_{\mu}(x_1,\dots,x_{n-1}) = 0) \text{ and } \\ \beta_{\kappa\mu} = \frac{\prod_{(i,j) \in \kappa} B_{\kappa\mu}^{\kappa}(i,j)}{\prod_{(i,j) \in \kappa} B_{\kappa\mu}^{\mu}(i,j)}, \end{split}$$

where $B_{\kappa\mu}^{\nu}(i,j)$ equals $\kappa_j^{\prime}-i+\alpha(\kappa_i-j+1)$ if $\kappa_j^{\prime}=\mu_j^{\prime}$ and $\kappa_j^{\prime}-i+1+\alpha(\kappa_i-j)$ otherwise. The expressions κ^{\prime} and μ^{\prime} refer to the conjugate partitions of κ and μ , respectively. The notation $(i,j)\in\kappa$ means that the product is taken over all coordinates (i,j) of boxes in the Young diagram of the partition κ .

When $\alpha=1$, with some normalization, Jack polynomials becomes Schur polynomials

▶ When $\alpha=1$, with some normalization, Jack polynomials becomes Schur polynomials which are certain symmetric polynomials in multi-variables, indexed by partitions.

- Mhen $\alpha=1$, with some normalization, Jack polynomials becomes Schur polynomials which are certain symmetric polynomials in multi-variables, indexed by partitions.
- ▶ When $\alpha = 1/2$, with some normalization, Jack polynomial gives \mathcal{C}_p .

- ▶ When $\alpha = 1$, with some normalization, Jack polynomials becomes Schur polynomials which are certain symmetric polynomials in multi-variables, indexed by partitions.
- ▶ When $\alpha = 1/2$, with some normalization, Jack polynomial gives C_p .

 $\mathsf{Macdonald}\ \mathsf{polynomial} \longrightarrow \mathsf{Jack}\ \mathsf{polynomial} \longrightarrow \mathsf{zonal}\ \mathsf{polynomial}.$

- Mhen $\alpha=1$, with some normalization, Jack polynomials becomes Schur polynomials which are certain symmetric polynomials in multi-variables, indexed by partitions.
- ▶ When $\alpha = 1/2$, with some normalization, Jack polynomial gives C_p .

 $\mathsf{Macdonald}\ \mathsf{polynomial} \longrightarrow \mathsf{Jack}\ \mathsf{polynomial} \longrightarrow \mathsf{zonal}\ \mathsf{polynomial}.$

$${}_sF_t^{(\alpha)}\left(\begin{matrix} a_1,\ldots,a_s\\b_1,\ldots,b_t \end{matrix}:Y\right):=\sum_{n=0}^{\infty}\sum_{p\in\mathcal{P}_n}\frac{(a_1)_p\cdots(a_s)_p}{(b_1)_p\cdots(b_t)_p}\cdot\frac{\mathcal{C}_p^{(\alpha)}(Y)}{n!}$$