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where (a), =a(a+1)---(a+ k—1).
Examples

> 5F; <a’cb : z> is the Gaussian hypergeometric function s. t.
d2W+( (a+b+1)2) ™~ abw =0

— +(c—(a z)— — =0.
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Hypergeometric function with matrix argument

Given an m x m symmetric (postive definite) matrix Y,

()= e )

) n= OpePn

where,

» P, is the set of all partitions of n
and a partition of nis a (p1,...,p) € N/ such that
pr>--->p>0and p; + -+ p = n(=|p|),
e.g. (5,2,2,1) € Po;

I ]
» for P = (Pl,---,PI) S an (a)p = H (a_ %)p,‘;

=

» Cp (Y) is (C-normalization of) zonal polynomial, which is
homogeneous, symmetric, polynomial of degree n = |p|, in the
eigenvalues of Y.
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Cp (Y)

» It is defined on eigenvalues of Y

CP (yla" -;Ym)

» For p=(p1,-..,p1), if m< 1, (will see why later)

Co(Y)=Co(y1,---,Ym,0,...,0)

» An important fact

ZC =rY)"' =01+ +ym)".
PEPn
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> Co(Y (),
of (1Y) =23 rS!):Z(n!) =

n=0 peP, n=0
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2p;i —2p; — I+
/1;[1( l ! ) 2"n!

(2n)

Co(Y) =dpp(Y), where dp, =
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» Define a linear space
V,, ;= {f : f is homogeneous, symmetric, of degree n, or f =0}

where f is defined on eigenvalues of matrices.
» Basis for V,,: define the elementary symmetric polynomial

ur (X1, .oy Xm) 1= Z Xiy X,
<<y
Then, for p=(p1,...,p1) € Pn

P1=P2  P2—P3 Pi—1—Pi p/( 0)
Up = 1y ) Uy )

> deglp =p1—p2+2(p2—p3) +- -+ lp=p1t+--+p=n
» U = (Z/I(,,),Z/{(,,,l,l),...,Z/l(l’l’,,,’l))T forms a basis of V.
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Vin) Un)
Yo y(n.—l,l) e u(nfl,l)
) Uy

» = is a matrix: nonsingular, upper triangular, such that
T, = Ezyl)AVE(V), where T, is related to Wishart distribution
and A, is its diagonal matrix.

» Define linear transform 7, : V,, — V,, by

(1w Up)) (A) :==Ew [Uy, (AW)] for W ~ W (I, v).

Then, a lemma (due to basis) shows 7,U/ = T, U.

» Z1,...,Zk ~ N (0,1) are independent (i. i. d. ), then
Q=271+ +Zk~x%

» Let X, xm be such that each row is independently drawn from
an m-variate normal distribution,

O X)) ~ N (0, V) = S = XTX ~ Wi (V,v)

1

and v is called the degree of freedom.



Computation



Computation

Ma(yi, -y Ym) = Z y,-il - -y,?’ =yt - - yMFsymmetric terms.

i1yl
distinct terms



Computation

Ma(yi, -y Ym) = Z y,-?l - -y,?’ =yt - - yMFsymmetric terms.

.....

dlstlnct terms

1.

May(Y)=yi++ Ym
2.

Mey(Y) =y +- + yh
3.

Y) = ZYiyj;
i<

4.

21) ZylyJ
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For p=(p1,...,pe) and A = (A1,..., Am),

CP(Y) = ZCP7/\M>\(Y)‘

A<p

for some constants ¢, »

Cp, A = Cp,u-

T it t) - —t)

A<H<p Pp — PA

Here,
¢
pp = pi(pi—J)
j=1

and for A = (\q,..., ), the sum is over all
M:()\1,...,)\;4-1‘,...,)\]'—t,...,)\/) for t = Y such that
by rearranging tuple p in a descending order, it lies as A < u < p.
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> n= 5

PAX 6 41 (32 (L1 (221) (21,11 (1,1,1,1,1)

(5) 1 5 10 20 2 4 8

o ¥ 2 4 # 3

(4,1) o X 4

(3,2) 0 o é % 176 64 &

3GL1) o0 0 0 10 i 1o 2o

(2,27 1) 0 0 0 0 % 16 32

(2,1,1,1) 0 0 0 0 0 ? 800

(1,1,1,1,1) 0 0 0 0 0 0 %
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> n= 5
P\X (5) (41) (32 (3.1,1) (221) (2,1,1,1) (1,1,1,1,1)
(5) 1 5 10 20 2 4 8
(4,1) o @ % 3 : a4 %
(3.2) o o & £ 176 & &
I 7 7
31,1) 0o 0 0 10 i 1o 2o
(2,1,1,1) 0 0 0 0 0 ? 800
(1,1,1,1,1) 0 0 0 0 0 0 %
g 4
Cay(a,b,c) = 3 (ab + bc + ac)

2
Cey(a, b, c) = a4+ b2+t 3 (ab+ bc + ac)
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@Applications Places System - ‘ @ TeX

&

%

File Edit View Search Terminal Help
1jiu@ljiu:~/Desktop/Now/Math/RISC&RICAMS sage

IPython: Math/RISC&RICAM

SageMath version 7.4, Release Date: 2016-10-18

Type "help()" for help.

Type "notebook()" for the browser-based notebook interface.

sage: load('Zonal.sage')

sage: var('a",'b',"c")

{a, b, c)

sage: MZonal([2,1],[a,b,c])

a”2*b + a*b"2 + a”2*c + b*2*c + a*c"2 + b*c"2
sage: CZonal([2,11,[a,b,c])

sage: coeffi(l2,17,[1,1,11)
18/5
sage: I

12/5*a”“2*b + 12/5%a*b”2 + 12/5%*a”2*c + 18/5*a*b*c + 12/5%b"2*c + 12/5%a*c”2 + 12/5*b*c"2
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Recall in R3, the following operators:

» gradient
Vf = (f, 1, f);

» divergence
oxX o0X 90X
ox = 9% L oX L o0X
div Ox + dy + 0z’

» Laplace

Pf Pf  Pf
Af—ﬁ‘i‘ﬁ‘i‘p—(le.V)f,

On a Riemannian manifold (M, g), the Laplace-Beltrami operator
on f € C* (M) is given by

Af = (divegrad) f = \/168;( (g"k\ﬁGﬁ,-f) .
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Let M = SPD (m) and associate the canonical metric. Then, for
Y € M with eigenvalues yi, ..., ¥m:

n 2 m-3 9 n 9
A=Y |V oz 5 Vig + ¥

Yig—
— " oy? 2 "0y ALY i

Euler's operator Ey, 3
Zonal polynomlal C (y1,-.-,ym) are eigenfunctions of Ay, defined
by

_ - 2 82 t y12 0

=2\ Y2t X

— P AT i Yi O

In particular

AyCyo(Y) = (pp+m(I—1))Cx(Y), where p, := Zp,- (pi —
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Consider G = GL (m) and a representation of linear space V),:
geGL(m):V, — V,
oY) = ¢(gv(e))
As a representation, the linear space can be decomposed into

invariant subspaces:
Vo= P V.
pG'Pn

Now, note that (trY)"” € V,. The projection

(trY)"

Vo
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» Macdonald polynomials Py(x; t, q) are a family of orthogonal
polynomials in several variables, introduced by Macdonald
(1987).

First fix some notation

« Ris a finite root system in a real vector space V.
« R*is a choice of positive roots, to which corresponds a positive Weyl chamber.
« Wis the Weyl group of R
« Qis the root lattice of R (the lattice spanned by the roots)
« Pis the weight lattice of R (containing Q)
« An ordering on the weights: gt < A if and only if A — p is a nonnegative linear combination of simple roots
« P*is the set of dominant weights: the elements of P in the positive Weyl chamber.
« pis the Weyl vector: half the sum of the positive roots; this is a special element of P* in the interior of the positive Weyl
chamber.
« Fisafield of characteristic 0, usually the rational numbers.
« A=F(P) is the group algebra of P, with a basis of elements written e for A € P.
o Ifi=¢* then fmeans ™, and this is extended by linearity to the whole group algebra.
« my, =T g e is an orbit sum: these elements form a basis for the subalgebra A" of elements fixed by W
+ (@ig)o = [J(1 = ag"). the infinite g-Pochhammer symbol.
T2
(€% 9)o
ok (te% )
« (f,9) = (constant term of fgA)/|W | is the inner product of two elements of A, at least when  is a positive integer
power of g.

s A=

The Macdonald polynomials P, for A € P* are uniquely defined by the following two conditions:
Py =" wy,m,, where uy, is a rational function of g and t with U, =
s
»> P, and P, are orthogonal if A <
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» If we put t = ga and let g tend to 1 the Macdonald
polynomials become Jack polynomials (with further conditions)

Definition [edit]
The Jack function Jiﬂl(mj 3T, ) of integer partition K, parameter &, and indefinitely many arguments @1, Z2,..., can
be recursively defined as follows:
Form=1
I @) =21+ a) (1 + (k- 1)a)
For m>1

I () = ZJ,::;&)(IM-'BE:---smm—l)m;r:fplﬁn_ua
I

where the summation is over all partitions g such that the skew partition N/u is a horizontal strip, namely

KL 2 1 = Ky 2 2 Z v+ 2 Kpol 2 ln—1 2 Kn (la must be zero or otherwise J,‘(:n,,, y®@poy) = 0)and
Tl ger Biali. )
i en Bl (i)

where By, (i, j) equals &; —i+alk;—j+1)it I{; = ’u.;i and ﬁ‘.; — i+ 1+ a(k; — j) otherwise. The expressions

Bop =

" and ,I.Ar refer to the conjugate partitions of & and p1, respectively. The notation (4, j) € k means that the product is taken
over all coordinates (i,j) of boxes in the Young diagram of the partition k.
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» When « = 1, with some normalization, Jack polynomials
becomes Schur polynomials which are certain symmetric
polynomials in multi-variables, indexed by partitions.

» When a = 1/2, with some normalization, Jack polynomial
gives Cp.

Macdonald polynomial — Jack polynomial — zonal polynomial.

(@)
() ( 915---5a )P .CP (Y)
sFe (bl,.. ) Z Z n!

v n=0 peP, P



