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y"Pn(y) =0.

yk=my
P satisfies a three-term recurrence: Pp =1, P =y — sp, and
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Example. 1. Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic
orthogonal polynomials, denoted by Qn(y), with respect to Ej:

Qn+1(y) = an(y) + ann—l(y)~

2. Touchard [16, eq. 44] computed the monic orthogonal polynomials with respect to
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1st Task

» Find the orthogonal polynomials with respect to B,(x), denoted by on(y);
P and the orthogonal polynomials with respect to E,(x), denoted by Q,(y).

Namely, for 0 < r < n,

y"on(y) =0=y"Qaly)
yk=By(x) yk=Ex(x)

[Question] Why?
P Generalization

P Probabilistic interpretations: Letting
pa(t) == gsechz(ﬂt) and pg(t) :=sech(wt), (t€R)

we define two random variables Lg and Lg with density functions pg and pg,
respectively. Then, with i = —1,

By(x) = E K;LBHH %)} :/R (it+x7 %)npg(t)dt, [5, eq. 2.14]

En(x) =E [(iLE +x — %)n] :/}R (it+x — %)npg(t)dt. [9, eq. 2.3]
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2. generalized Motzkin numbers:

Mpt1,6 = Mn k-1 + 0kcMp i + Tir 1 M k41

M, « = sum of weighted lattice paths from (0, 0) to (n, k).

> 1
Z M”7ozn = 1 7‘122
— —opz — — &
Ok Qe
> Let X be an arbitrary random variable, with moments

mp and monic orthogonal polynomials P,(y) satisfying
the recurrence

Pri1(y) = (v = sn)Pn(y) — tnPn—1(y)-

Then, we have
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Continued Fractions
By letting (o, 7k) = (s, tk). If further assuming mp = 1, we have
Mn.o = mp = E[X"].
Example. The monic orthogonal polynomials with respect to E,, Qn(y). satisfy

Qn+1(y) = an(y) + ann—l(}/)-

Euler numbers E, are given by the weighted lattice paths (1,0, —k2) = horizontal
paths are eliminated. Therefore, E, counts the weighted Dyck paths, related to
Catalan numbers C,.

n==6:

Then, by noting that each diagonally down path from (j, k) to (j + 1, k — 1) has
weight —k2, we have

—61 = E¢ = (—1)° (322212 4 222212 + 17221 + 221712 +171%1%) .
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Namely, for 0 < r < n,

¥y on(y) =0=y" Qn(y)

yh=By(x) yk=Ek(x)

NOTE:

Bn(x) =E KiLB +x— %)} and B, =B,(0)=E KILB - %)} ,

and the monic orthogonal polynomials with respect to the By, denoted by R(y), are

given by
4

1 n
Rn+l(y) = (Y+ E) Rn(y) - ml‘?n—l(}/)‘

Let ¢ be a constant.

X~ Pa(y)
X+c ~ 7
X ~ 7

E,=2"E,(1/2)
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U n n—k = = = -
X+c () mee Pay) s Pasa(y) = (v = 50— Paly) — taPo-a(y)
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Proof.

Isn(y) = Pp(y —¢) and I5,,(y) = C"Pn(y/C).

Theorem. [L. Jiu and D. Shi]

Br | Rei() = (v +3) Re(y) — apmmriia—y Ro—1()
Bn(x) | ent1(y) = (y —x+ 3) enly) + W“(%l)gnfl(y)
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» Find the orthogonal polynomials with respect to B,(,p)(x), denoted by gs,p)(y);

» and the orthogonal polynomials with respect to E,sp)(x), denoted by Qﬁ,p)(y).

Recall that
» Bernoulli polynomial By(x): P Euler polynomial E,(x):
t xt __ = tn. 2 Xt __ = tn.
etfle —an(X)H, et+le _;OE"(X)H’
» Bernoulli polynomial of order » Euler polynomial of order p
p B (x): ESP)(x):
t N g0t (L2 N e S g 02
(etfl) e —;)B,, (X); 1) © —nz::OEn (X);
> >

Ba(x) = E [(iLB +x = %)} En(x) =E K"LE - %)}

BP(x)=E[?] EP(x)=E[7]
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Let X and Y be two independent variables, with moments m, and m/, respectively. In
addition, define the moment generating functions:

o~ " < 4n
F(t) ==E[e] = ;omnﬁ and  G(t) ==E[e"] = ;om/"ﬁ
Then,
BT = 3 (0 meny
and kzo

E [ef<x+y>} = F(t)G(t).
Consider a sequence of independent and identically distributed (i. i. d. ) random
variables <LEJ,)‘_’ L with each Lg, ~ Lg(sech(t)). Then E,Sp)(x) is the nth moment of a
j=

certain random variable:

Similarly, given an i. i. d. (LBJ,)I_) with Lg; ~ Lg(msech?(rt)/2),

Jj=1

) , o
BP (x) = E (x—i—ZiLBj—g) .
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Given a sequence a = (a,,),fio, the nth Hankel determinant of a is defined by

ao EN ar AR an
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Ap (@) = det

an ant+l1  any2 azn

Recall that given a sequence of numbers/moments m := (mp);2, let Py(y) be the
monic orthogonal polynomials with respect to m,. Namely, for all 0 < r < n

¥ Pn(y) =0

yk=my
Suppose P satisfies the three-term recurrence:

Pri1(y) = (v — sn)Pn(y) — tnPp—1(y).

Theorem. (1) If maky1 =0 for all k € N, then, s, =0;
Recall The monic orthogonal polynomials with respect to E,, Qn(y), satisfy

Qni1(y) = yQn(y) + n* Qn1(y).
And

oo

t" 2et
E2k+1 =0. Z Enﬁ = TH = sech(t).
n=0
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Then,
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Hankel Determinant

ao ar a» e an
ai az as cc antl
Ap (@) ;= det
an ant+l1  any2 v azn

m = (mn);2g < Pnr1(y) = (v — sn)Pn(y) — taPa—1(y).
Theorem. (2) Define a(c) = (an(c))52, by

n

an(c) = Z (:) ap_xck.

k=0
Then,
Ap(a(c)) = An(a).
(3) [11, Thm. 11, p. 20]
Ap(m) = miH(—t1)"(—t2)" - (—ta-1)?(— ),

which simpliy implies that
_ Ap(m)A, 2(m)

—t, =

[An—1(m)]?
X my Pa(y) i Paia(y) = (v — sn)Pa(y) = tnPa—1(y)
Rl Xt | S ()me™ | Pi): Pratn) = = 50— OPaly) — oPa ()
k=0




2nd Task

Theorem. (4)

mo
my

Paly) 1 det|
= —— Qe .

"= AL 1(m) :
mp—1
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my m2 mp

m2 m3 Mp+1

mp  Mpt1 m2p—1
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2nd Task

Theorem. (4)

mg my m2 mn
ma m2 m3 Mp+1
1
Pp(y) = —————— det :
Anfl(m) .
mp—1 mp  Mpya m2p—1
1 y ) y"

» Find the orthogonal polynomials with respect to B (x) denoted by g(p)( );
P and the orthogonal polynomials with respect to E,(, )(X), denoted by Qf, )(y).
By the generating functions

N 2 o (7)(
(eul) ZBP and (e1+1) 2 =" EP X)f

n=0

we have ®) (
Bgi+1(P/2) =0= E2£+1(P/2)
Then, with the lemma for shifted and scaled random variables, we see

P
P00 = (v =x+2) P 0) + 6P )

L) = (v —x+ 2) 2P ) + P2 (y)
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The first several terms of bf,p is given in the following table

p=1 p=2 p=3 p=4 p=>5
_ 1 1 1 1 5
n=1 12 6 2 3 12
n—2 4 13 3 23 1
15 30 5 30 15
n=3 81 372 1339 2109 1527
140 255 1260 1610 980
n—a 64 3736 138688 668543 171830
63 2821 84357 339549 74823
n=s 625 1245075 200504775 | 42601023200 | 3638564965
396 636088 127670072 | 15500520057 | 1154491404
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Conjecture on bﬁp)

)

The first several terms of bf,p is given in the following table

p=1 p=2 p=3 p=4 p=5
_ 1 1 1 1 5
n=1 12 6 2 3 12
=2 | 4 13 3 3 12
= 15 30 5 30 15
n—3 81 372 1339 2109 1527
= 140 155 1260 1610 980
n—4 64 3736 138688 668543 171830
= 63 2821 84357 339549 74823
n—=5 625 1245075 200594775 | 42601023200 | 3638564965
= 396 636088 127670072 | 15500520057 | 1154491404
P The first column has formula
ot
4(2n+1)(2n—-1)
Roa(y) + DY Ry Y Ra(y)
n+1\Y) =Yy —X = n\Y)— T~ -1y
2 4(2n+1)(2n—1)

P The first row is p/12
P The second row is (5p + 3)/30




Conjecture on b,

p=1 p=2 p=3 p=4 p=>5
_ 1 1 1 1 5
n=1 12 6 1 3 12
n=2 4 13 3 23 1
15 30 5 30 15
n=3 81 372 1339 2109 1527
140 455 1260 1610 980
n=4 64 3736 138688 668543 171830
63 2821 84357 339549 74823
n=>5 625 1245075 299594775 42601023200 3638564965
396 636988 127670972 15509529057 1154491404

Conjecture. [K. Dilcher]

b(p) - 175p% + 315p + 158

140(2p + 3)
P _ 6125p* + 25725p3 + 41965p° + 29547p + 7230
4 21(5p + 3)(175p2 + 315p + 158) '

b{P) = 25(5p + 3)(471625p° + 3678675p° + 12324235p* + 22096305p3 +
22009540p% + 11549748p + 2519472) / (132(175p? 4 315p +
158)(6125p* + 25725p3 + 41965p2 + 29547p + 7230)).



Difficulties



Difficulties

P Guessing polynomials (rational functions)

14+2+--+n = w



Difficulties

P Guessing polynomials (rational functions)

142+ 4n = w
n(n+1)(2n+1)

P+224. 407 = 6



Difficulties

P Guessing polynomials (rational functions)

142440 = HotD
2
12422 4...402 = w
6
k+l
1h4okpoqppk = Zajn’(a polynomial in variable n of degree k + 1)

Jj=0



Difficulties

P Guessing polynomials (rational functions)

1424 . 41n = w
P2t o = n(n+1)(2n+1)
6
k+l
1h4okpoqppk = Z ajr’ (a polynomial in variable n of degree k + 1)
j=0

1
= —[B 1)—-B
k+1[ ki1 (n+1) k1]



Difficulties

P Guessing polynomials (rational functions)

1
142+---4n = w
2422440 = 7”(”+1)6(2”+1)
k+1 )
1h4okpoqppk = Z ajr’ (a polynomial in variable n of degree k + 1)
j=0
 [Bia (n 1)~ Bl
= Fr—— n —_
K1 k+1 k+1
>
random variable moments monic orthogoal polynomial
X mp Pa(y) 1 Pata(y) = (¥ = s0)Pn(y) — taPa—1(y)
X+ec ()mec™™ | Pay) s Posaly) = (v = s = )Paly) = toPr1(y)
k=0
X C"m, 'E'n(y) : Ier»l(_V) = (y - Csn)"sn(.)/) - Cztnﬁnfl(}/)
X+Y Convolution 77
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The first several terms of e
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How about e,(,p)?

(p)

The first several terms of e, is given in the following table

p=1 p=2 p=3 p=4 | p=5
n=1 1 1 2 4 =
n=2 3 3 3 5 2
n=3 1 2 L 6 3
n=4 1 s 2 7 10
n= 2 3 2 8 2

» Theorem. [L. Jiu and D. Shi]

n(n+p—1
Q) = (v —x+ £) 2y + L0 Lgo) (),



Meixner-Pollaczek polynomials
The Meixner-Pollaczek polynomials are defined by
P,SA)(}/;Kﬁ) — (2\)n e 5 Fy (—",;\;- i e—2i¢) 7

n!
where (x)n := x(x + 1)(x +2) - - - (x + n — 1) is the Pochhammer symbol and 2 F; is
the hypergeometric function

at,...,a
qu( ) »ap
blv---qu

X (a)n - (3p)a 7
t) =2 (o) (B)e Al

n=0




Meixner-Pollaczek polynomials
The Meixner-Pollaczek polynomials are defined by

20 i At L
A)(y:¢>):f( ) ¢ F( > Y11 e 2¢),

where (x)n == x(x +1)(x+2)--- (x + n— 1) is the Pochhammer symbol and >F; is
the hypergeometric function

ai,..
F
g q(blv--'vb

)N

n=

Recurrence.
(n+1)PL)(v: ) = 2(ysing + (n+ M) cos )P (v 6) — (n+2X — )P (1 ¢).
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Meixner-Pollaczek polynomials
The Meixner-Pollaczek polynomials are defined by

2)n _in At
Vi) i= Bnamoap (ThIEY

1_ e—2i¢) ’

where (x)n == x(x +1)(x+2)--- (x + n— 1) is the Pochhammer symbol and >F; is

the hypergeometric function

(n+2X— 1)P 1(y ?).

ai, .. = (ap)n "
F, = RS AUR Sl AN
P q(blv---vb ) nz: (bq)n nl
Recurrence.
(n+ 1P (v 6) = 2y siné + (n+ A) cos §) P (y: 6) -
KEY.

k=0
Theorem. [L. Jiu and D. Shi]

(p) _M (%) ., P
QP(y) = Pt (i (y—x+ 8

P (y1 4 y2, ) = Z P;((M (y1,9) Pﬁi)k (y2,9)-

D
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The Meixner-Pollaczek polynomials are defined by
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(n+ 1P (vi ) = 2(ysing + (n+ A) cos $)PS) (y; ¢) — (n + 21 — 1)PDY), (y; ¢).
KEY.
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k=0
Theorem. [L. Jiu and D. Shi]

Qg,p)(y) = ITZIP’(’%) (—i(y—x—i-g);g).

Fact. Euler numbers E, have monic orthogonal polynomials Qn(y):

Qnr1(y) = yQn(y) + n*Qn-1(y),

Quly) = i"nt Pz (’T’V g) .



Continuous Hahn Polynomials

The Continuous Hahn polynomial is defined by
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Fact. Recall the orthogonal polynomials with respect to Bs(x), denoted by gn(y).
Then,



Continuous Hahn Polynomials

The Continuous Hahn polynomial is defined by

in(a—l—c),,(a—i—d),, E (—n,n+a+b+c+d—1,a+ix
——3Fk2

pn(x;a, b, c,d) = atcatd

n!

1).

Fact. Recall the orthogonal polynomials with respect to Bs(x), denoted by gn(y).
Then,

b (1111)
eV =i,V

The key property for Meixner-Pollaczek polynomials

PO (11 + 2, 6) = Z PX (y1,6) PY), (v2,9)

does not hold for continuous Hahn polynomials.
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What's Next?

Recall that

—61 = Eg = (—1)% (322212 4 222212 + 172212 4 221212 4+ 171%1?) |
Aim:

Exp=) f(-13,-2%,...,-n%)
Try: recall G; =1, G =2, G3 =5 and G4 = 14. “Chalk Work”

Catalan
Numbers

RICHARD P. STANLEY /

N




What's Next?

4

1 n
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What's Next?

1 n*
R, = 2R — R,
n+1(¥) (y+ 2) n(y) + aeni D1 1(y)
n 0 1 2 |3 4
B 1| ilo]-%
Forany0<r<n
Y Ra(y) =0= Rn(y) =0
yk*Bk yk*Bk

> Ro = 1;

> R1:y+%:



What's Next?

1 n*
R = -)R — R,
) = (r+3 ) R+ o )
nflo] 1 [2]3] 4
N N R
Forany0<r<n
Y Ra(y) =0= Rn(y) =0
yk=By yk=By
>R0:1;
> Ri=y+ 3 Ri(y) =Bi+3Bo=—-3+3=0

yk=By



What's Next?

1 n*
R = )R — R._
) = (v 3 ) R+ g R )
n 0 1 2 |3 4
e 113 l0]-%
Forany 0 <r<n
Y'Ra(y) =0= Ra(y) =0
yk=By yk=By
> Ro = 1;
> Ri=y+3 Ruy) =Bi+3Bo=-3+3=0
yk=By

> Re=(y+3)v+3)+5=r+y+3



What's Next?

1 4
R = - R [ — -
ra) = (v 43 ) R+ gt Ra ()
n 0 1 2 |3 4
B [ -135lol-%
Forany0<r<n
Y"Ra(y) =0= Ru(y) —0
yk=By yk=B,
> Ro:]_;
> R =y+1: Ri(y) =Bi+1B=-111l=0
yk=By
> Re=(y+3) )+ =iyt
R2(y)‘ :B2+Bl+%:%—%+%:0;

yk=By



What's Next?

1 n*
R = - IR —R,_
n+1(.y) (Y-i- 2) n(y)+4(2n+1)(2n_1) n 1(y)
n 0 1 2 3 4
s {1 -f3 o] -%
Forany0<r<n
Y"Ra(y) =0= Ra(y) =0
yk=By yk=By
> Ry=1;
> Ri=y+3 Riy) =B +iB=-1+1=0
yk=By
> Re=(y+3)v+3)+5=r+y+3
Ra(y) =B+Bi+3=%t-3+3=0
yk=By
> Re=(y+2) (P +y+3)+5+3) =y + 3y + gy + %
Rs(y) :B3+%BZ+%B]_+%:O;
yk=By



What's Next?



What's Next?

Bo(x +1) = By(x) = nx""1 & By(x +1) — By(x) —nx""1 =0



What's Next?

Bo(x +1) = By(x) = nx""1 & By(x +1) — By(x) —nx""1 =0

P(my)=(y+x+1)"—=(y +x)" = nx""! (= Pp_a(y))



What's Next?

B,(x+1) — B,(x) = x" 1 e Ba(x 4+ 1) — By(x) — "1 =0
P(ny) = (v +x +1)" = (v +2)" = n" (= Py a(y)

P(n;y) = 0.
yk=Bx



What's Next?

B,(x+1) — B,(x) = x" 1 e Ba(x 4+ 1) — By(x) — "1 =0
P(ny) = (v +x +1)" = (v +2)" = n" (= Py a(y)

P(n;y) =0.

yk=By

for n > 0.
yk=Bx

Recall that deg R, = n, and R,(y)




What's Next?

B,(x+1) — B,(x) = x" 1 e Ba(x 4+ 1) — By(x) — "1 =0
P(ny) = (v +x +1)" = (v +2)" = n" (= Py a(y)

P(n;y) =0.

yk=By

for n > 0.
yk=Bx

Recall that deg R, = n, and R,(y)

Proposition.

P(n;y)



What's Next?

B,(x+1) — B,(x) = x" 1 e Ba(x 4+ 1) — By(x) — "1 =0
P(ny) = (v +x +1)" = (v +2)" = n" (= Py a(y)

=0.
yk=By

P(n;y)

for n > 0.
yk=Bx

Recall that deg R, = n, and R,(y)

Proposition.
n—1
P(ny) = ankRi(y).
k=1

For some constants «, x that are independent of y.



What's Next?

B,(x+1) — B,(x) = x" 1 e Ba(x 4+ 1) — By(x) — "1 =0
P(ny) = (v +x +1)" = (v +2)" = n" (= Py a(y)

=0.
yk=By

P(n;y)

for n > 0.
yk=Bx

Recall that deg R, = n, and R,(y)

Proposition.
n—1
P(ny) = ankRi(y).
k=1

For some constants «, x that are independent of y.
Proof. By induction on the degree of P.



What's Next?

Exmaple.



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1

Ri=y+3
> 1
Re=y"+y+3

3
3 11 3
Ra=y*+2y*+ 5V + 15



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P(2iy) =y 1 (y 4 5 - 2x



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;
> P(3;y) =3y*+ (3+6x)y +3x+1



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P(2;y):(y+x+1)2—(y+x)2—2x:2y—|—1:2R1;
> P3iy) =3y>+(3+6x)y +3x+1=3(y>+y+3)+



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;
> P(3y)=3y2+ (3+6x)y +3x+1=3(y2+y+ 1) +6xy+3x



What's Next?

Exmaple.

P(n;)/):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
2 1
3 11 3
_ 3 D2 L1 S
R3—y +2y —|—10y-|-10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;
> P(3y)=3y2+ (3+6x)y +3x+1=3(y2+y+ 1) +6xy+3x



What's Next?

Exmaple.

P(n;y):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
) 1
Re=y"+y+3
3 11 3
_ 3,3 11 3
Ra=y + 3"+ 10"t 10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;

> P(3y)=3y2+ (3+6x)y +3x+1=3(y2+y+ 1) +6xy+3x
= 3R, + 6xRy;



What's Next?

Exmaple.

P(n;y):(}/"‘X—f—l)”_(y_’_x)n_nxnfl

1
R1:y+§
) 1
Re=y"+y+3
3 11 3
_ 3,3 11 3
Ra=y + 3"+ 10"t 10

> P2;y)=(y+x+1)2—(y +x)®2—2x =2y + 1 =2Ry;

> P(3y)=3y2+ (3+6x)y +3x+1=3(y2+y+ 1) +6xy+3x
= 3R, + 6xRy;

> P(4;y) = 4Rz + 12xR; + (12x2 — %)Rl'



What's Next?

» g-analogue?



What's Next?

» g-analogue?

» hypergeometric Bernoulli numbers:



What's Next?

» g-analogue?

» hypergeometric Bernoulli numbers:

n=0

=" t 1
ZB"H:et—lz ThY
1F1<2 t)




What's Next?

» g-analogue?

» hypergeometric Bernoulli numbers:




What's Next?

» g-analogue?
» hypergeometric Bernoulli numbers:




What's Next?

» g-analogue?

» hypergeometric Bernoulli numbers:




What's Next?

» g-analogue?

» hypergeometric Bernoulli numbers:




End

Thank youl
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