Orthogonal Polynomials for Bernoulli and Euler Polynomials

Lin JIU

Dalhousie University Number Theory Seminar Jan. 7th, 2019

Acknowledgment

- Diane Shi
- ► Tianjin University

Objects

 \triangleright Bernoulli numbers B_n :

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!};$$

▶ Bernoulli polynomial $B_n(x)$:

$$\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}; \qquad \frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!};$$

Bernoulli polynomial of order p $B_{n}^{(p)}(x)$:

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!};$$

Euler numbers E_n:

$$\frac{2e^{t}}{e^{2t}+1} = \sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!};$$

 \triangleright Euler polynomial $E_n(x)$:

$$\frac{2}{e^t+1}e^{xt}=\sum_{n=0}^\infty E_n(x)\frac{t^n}{n!};$$

Euler polynomial of order p $F_{n}^{(p)}(x)$:

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!}; \qquad \left(\frac{2}{e^z + 1}\right)^p e^{xz} = \sum_{n=0}^{\infty} E_n^{(p)}(x) \frac{z^n}{n!};$$

Objects

▶ Bernoulli numbers *B_n*:

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!};$$

▶ Bernoulli polynomial $B_n(x)$:

$$\frac{t}{e^t-1}e^{xt}=\sum_{n=0}^\infty B_n(x)\frac{t^n}{n!};$$

Bernoulli polynomial of order p $B_{n}^{(p)}(x)$:

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!};$$

Euler numbers E_n:

$$\frac{2e^t}{e^{2t}+1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!};$$

 \triangleright Euler polynomial $E_n(x)$:

$$\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}; \qquad \frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!};$$

Euler polynomial of order p $F_{n}^{(p)}(x)$:

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n = 0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!}; \qquad \left(\frac{2}{e^z + 1}\right)^p e^{xz} = \sum_{n = 0}^{\infty} E_n^{(p)}(x) \frac{z^n}{n!};$$

$$B_n^{(1)}(x) = B_n(x); B_n(0) = B_n; E_n^{(1)}(x) = E_n(x); E_n(1/2) = E_n/2^n.$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n ,

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n),

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$,

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$,

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$, and

$$\int_{\mathbb{R}} P_m(t) P_n(t) p(t) dt = c_n \delta_{m,n} = \begin{cases} c_n, & \text{if } m = n; \\ 0, & \text{otherwise.} \end{cases}$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$, and

$$\int_{\mathbb{R}} P_m(t) P_n(t) p(t) dt = c_n \delta_{m,n} = \begin{cases} c_n, & \text{if } m = n; \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$, and

$$\int_{\mathbb{R}} P_m(t) P_n(t) p(t) dt = c_n \delta_{m,n} = \begin{cases} c_n, & \text{if } m = n; \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

 P_n satisfies a three-term recurrence: $P_0 = 1$, $P_1 = y - s_0$, and

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$, and

$$\int_{\mathbb{R}} P_m(t) P_n(t) p(t) dt = c_n \delta_{m,n} = \begin{cases} c_n, & \text{if } m = n; \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

 P_n satisfies a three-term recurrence: $P_0 = 1$, $P_1 = y - s_0$, and

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Example. 1. Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic orthogonal polynomials, denoted by $Q_n(y)$, with respect to E_n :

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Let X be a random variable with density function p(t) on $\mathbb R$ and with moments m_n , i.e.,

$$m_n = \mathbb{E}[X^n] = \int_{\mathbb{R}} t^n p(t) dt.$$

Let $P_n(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_n), i.e., $\deg P_n = n$, $\mathrm{LC}[P_n] = 1$, and

$$\int_{\mathbb{R}} P_m(t) P_n(t) p(t) dt = c_n \delta_{m,n} = \begin{cases} c_n, & \text{if } m = n; \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

 P_n satisfies a three-term recurrence: $P_0 = 1$, $P_1 = y - s_0$, and

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Example. 1. Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic orthogonal polynomials, denoted by $Q_n(y)$, with respect to E_n :

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

2. Touchard [16, eq. 44] computed the monic orthogonal polynomials with respect to the B_n , denoted by $R_n(y)$:

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y).$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y) \bigg|_{y^k = B_k(x)} = 0$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r\varrho_n(y)\bigg|_{y^k=B_k(x)}=0=y^r\Omega_n(y)\bigg|_{y^k=E_k(x)}.$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y) \Big|_{y^k = B_k(x)} = 0 = y^r \Omega_n(y) \Big|_{y^k = E_k(x)}.$$

[Question] Why?

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y' \varrho_n(y) \Big|_{y^k = B_k(x)} = 0 = y' \Omega_n(y) \Big|_{y^k = E_k(x)}.$$

[Question] Why?

Generalization

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y) \Big|_{y^k = B_k(x)} = 0 = y^r \Omega_n(y) \Big|_{y^k = E_k(x)}.$$

[Question] Why?

- Generalization
- Probabilistic interpretations:

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

[Question] Why?

- Generalization
- Probabilistic interpretations: Letting

$$p_B(t) := rac{\pi}{2} \mathrm{sech}^2(\pi t) \quad ext{and} \quad p_E(t) := \mathrm{sech}(\pi t), \quad (t \in \mathbb{R})$$

we define two random variables L_B and L_E with density functions p_B and p_E , respectively. Then, with $i^2=-1$,

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right] = \int_{\mathbb{R}} \left(it + x - \frac{1}{2}\right)^n p_B(t) dt, \quad [5, eq. 2.14]$$

$$E_n(x) = \mathbb{E}\left[\left(iL_E + x - \frac{1}{2}\right)^n\right] = \int_{\mathbb{R}} \left(it + x - \frac{1}{2}\right)^n p_E(t) dt. \quad [9, eq. 2.3]$$

► The generalized Motzkin numbers:

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

Path: Lattice path on \mathbb{N}^2

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

Path: Lattice path on \mathbb{N}^2 ($0 \in \mathbb{N}$)

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

Path: Lattice path on \mathbb{N}^2 $(0 \in \mathbb{N})$ and only three types are considered:

$$\begin{cases} \alpha_k: (j,k) \to (j+1,k+1) & \text{diagonally up} \nearrow \\ \beta_k: (j,k) \to (j+1,k); & \text{horizontal} \to \\ \gamma_k: (j,k) \to (j+1,k-1) & \text{diagonally down} \end{cases} \searrow$$

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

Path: Lattice path on \mathbb{N}^2 (0 $\in \mathbb{N})$ and only three types are considered:

$$\begin{cases} \alpha_k : (j,k) \to (j+1,k+1) & \text{diagonally up} \nearrow \\ \beta_k : (j,k) \to (j+1,k); & \text{horizontal} \to \\ \gamma_k : (j,k) \to (j+1,k-1) & \text{diagonally down} \end{cases} \searrow$$

Example.

$$\begin{pmatrix} M_{0,k} \\ M_{1,k} \\ M_{2,k} \\ M_{3,k} \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 1 \\ 2 & 2 & 1 \\ 4 & 5 & 3 & 1 \end{pmatrix}$$

- ► The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

 $M_{n,k} = \#$ of <u>paths</u> from (0,0) to (n,k).

Path: Lattice path on \mathbb{N}^2 $(0 \in \mathbb{N})$ and only three types are considered:

$$\begin{cases} \alpha_k: (j,k) \to (j+1,k+1) & \text{diagonally up} \nearrow \\ \beta_k: (j,k) \to (j+1,k); & \text{horizontal} \to \\ \gamma_k: (j,k) \to (j+1,k-1) & \text{diagonally down} \searrow \end{cases}$$

Example.

$$\begin{array}{c} M_{0,k} \\ M_{1,k} \\ M_{2,k} \\ M_{3,k} \\ \end{array} \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ 2 & 2 & 1 & \\ 4 & 5 & 3 & 1 \\ \end{pmatrix} \Rightarrow M_{3,1} = 5$$

- The generalized Motzkin numbers:
 - 1. Motzkin numbers: $M_{0,0} = 1$, $M_{n,k=0}$ if k > n or n < 0, and

$$M_{n+1,k} = M_{n,k-1} + M_{n,k} + M_{n,k+1}.$$

$$M_{n,k} = \#$$
 of paths from $(0,0)$ to (n,k) .

Path: Lattice path on \mathbb{N}^2 $(0 \in \mathbb{N})$ and only three types are considered:

$$\begin{cases} \alpha_k: (j,k) \to (j+1,k+1) & \text{diagonally up} \nearrow \\ \beta_k: (j,k) \to (j+1,k); & \text{horizontal} \to \\ \gamma_k: (j,k) \to (j+1,k-1) & \text{diagonally down} \end{cases} \searrow$$

Example.

$$\begin{array}{c} M_{0,k} \\ M_{1,k} \\ M_{2,k} \\ M_{3,k} \\ \end{array} \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ 2 & 2 & 1 & \\ 4 & 5 & 3 & 1 \\ \end{pmatrix} \Rightarrow M_{3,1} = 5$$

► The generalized Motzkin numbers:

- ► The generalized Motzkin numbers:
 - 2. generalized Motzkin numbers:

$$M_{n+1,k} = M_{n,k-1} + \frac{\sigma_k}{\sigma_k} M_{n,k} + \frac{\tau_{k+1}}{\sigma_{k+1}} M_{n,k+1}$$

- ► The generalized Motzkin numbers:
 - 2. generalized Motzkin numbers:

$$M_{n+1,k} = M_{n,k-1} + \frac{\sigma_k}{\sigma_k} M_{n,k} + \frac{\tau_{k+1}}{\sigma_{k+1}} M_{n,k+1}$$

$$\sigma_k$$

3rd Reason

- ► The generalized Motzkin numbers:
 - 2. generalized Motzkin numbers:

$$M_{n+1,k} = M_{n,k-1} + \frac{\sigma_k}{\sigma_k} M_{n,k} + \frac{\tau_{k+1}}{\sigma_{k+1}} M_{n,k+1}$$

 $M_{n,k} = \text{sum of weighted lattice paths from } (0,0) \text{ to } (n,k).$

3rd Reason

- ► The generalized Motzkin numbers:
 - 2. generalized Motzkin numbers:

$$M_{n+1,k} = M_{n,k-1} + \frac{\sigma_k}{\sigma_k} M_{n,k} + \frac{\tau_{k+1}}{\sigma_{k+1}} M_{n,k+1}$$

 $M_{n,k} = \text{sum of weighted lattice paths from } (0,0) \text{ to } (n,k).$

$$\sigma_{k}$$

$$\sum_{n=0}^{\infty} M_{n,0} z^n = \frac{1}{1 - \sigma_0 z - \frac{\tau_1 z^2}{1 - \sigma_1 z - \frac{\tau_2 z^2}{\dots}}}$$

3rd Reason

- ► The generalized Motzkin numbers:
 - 2. generalized Motzkin numbers:

$$M_{n+1,k} = M_{n,k-1} + \frac{\sigma_k}{\sigma_k} M_{n,k} + \frac{\tau_{k+1}}{\sigma_{k+1}} M_{n,k+1}$$

 $M_{n,k} = \text{sum of weighted lattice paths from } (0,0) \text{ to } (n,k).$

$$\sum_{n=0}^{\infty} M_{n,0} z^n = \frac{1}{1 - \sigma_0 z - \frac{\tau_1 z^2}{1 - \sigma_1 z - \frac{\tau_2 z^2}{2 - \sigma_1}}}$$

Let X be an arbitrary random variable, with moments m_n and monic orthogonal polynomials $P_n(y)$ satisfying the recurrence

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Then, we have

$$\sum_{n=0}^{\infty} m_n z^n = \frac{m_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \dots}}}.$$

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have $M_{n,0} = m_n = \mathbb{E}[X^n].$

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $\left(1,0,-k^2\right)$

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $(1,0,-k^2)$ \Rightarrow horizontal paths are eliminated.

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $(1,0,-k^2)$ \Rightarrow horizontal paths are eliminated. Therefore, E_n counts the weighted *Dyck paths*, related to Catalan numbers C_n .

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $(1,0,-k^2) \Rightarrow$ horizontal paths are eliminated. Therefore, E_n counts the weighted *Dyck paths*, related to Catalan numbers C_n .

$$C_3:=\frac{1}{4}\binom{6}{3}=5$$

By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

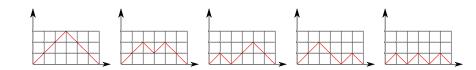
Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $(1,0,-k^2) \Rightarrow$ horizontal paths are eliminated. Therefore, E_n counts the weighted *Dyck paths*, related to Catalan numbers C_n .

n = 6:

$$C_3 := \frac{1}{4} \binom{6}{3} = 5$$



By letting $(\sigma_k, \tau_k) = (s_k, t_k)$. If further assuming $m_0 = 1$, we have

$$M_{n,0}=m_n=\mathbb{E}[X^n].$$

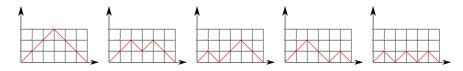
Example. The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Euler numbers E_n are given by the weighted lattice paths $(1,0,-k^2) \Rightarrow$ horizontal paths are eliminated. Therefore, E_n counts the weighted *Dyck paths*, related to Catalan numbers C_n .

n = 6:

$$C_3 := \frac{1}{4} \binom{6}{3} = 5$$



Then, by noting that each diagonally down path from (j, k) to (j + 1, k - 1) has weight $-k^2$, we have

$$-61 = E_6 = (-1)^3 (3^2 2^2 1^2 + 2^2 2^2 1^2 + 1^2 2^2 1^2 + 2^2 1^2 1^2 + 1^2 1^2 1^2).$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r\varrho_n(y)\bigg|_{y^k=B_k(x)}=0=y^r\Omega_n(y)\bigg|_{y^k=E_k(x)}.$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

NOTE:

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right]$$
 and $B_n = B_n(0) = \mathbb{E}\left[\left(iL_B - \frac{1}{2}\right)^n\right]$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

NOTE:

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right]$$
 and $B_n = B_n(0) = \mathbb{E}\left[\left(iL_B - \frac{1}{2}\right)^n\right]$,

and the monic orthogonal polynomials with respect to the B_n , denoted by $R_n(y)$, are given by

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y).$$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

NOTE:

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right]$$
 and $B_n = B_n(0) = \mathbb{E}\left[\left(iL_B - \frac{1}{2}\right)^n\right]$,

and the monic orthogonal polynomials with respect to the B_n , denoted by $R_n(y)$, are given by

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y).$$

Let c be a constant.

$$X \sim P_n(y)$$

 $X + c \sim ?$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

NOTE:

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right]$$
 and $B_n = B_n(0) = \mathbb{E}\left[\left(iL_B - \frac{1}{2}\right)^n\right]$,

and the monic orthogonal polynomials with respect to the B_n , denoted by $R_n(y)$, are given by

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y).$$

Let c be a constant.

$$X \sim P_n(y)$$

 $X + c \sim ?$
 $cX \sim ?$

- Find the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n(x)$, denoted by $\Omega_n(y)$.

Namely, for $0 \le r < n$,

$$y^r \varrho_n(y)\Big|_{y^k=B_k(x)}=0=y^r \Omega_n(y)\Big|_{y^k=E_k(x)}.$$

NOTE:

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right]$$
 and $B_n = B_n(0) = \mathbb{E}\left[\left(iL_B - \frac{1}{2}\right)^n\right]$,

and the monic orthogonal polynomials with respect to the B_n , denoted by $R_n(y)$, are given by

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y).$$

Let c be a constant.

$$X \sim P_n(y)$$

$$X + c \sim ?$$

$$cX \sim ?$$

$$E_n = 2^n E_n(1/2)$$

Lemma. [L. Jiu and D. Shi]

random variable	moments	monic orthogoal polynomial
X	m _n	$P_n(y): P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y)$
X + c	$\sum_{k=0}^{n} \binom{n}{k} m_k c^{n-k}$	$\bar{P}_n(y): \ \bar{P}_{n+1}(y) = (y - s_n - c)\bar{P}_n(y) - t_n\bar{P}_{n-1}(y)$
CX	$C^n m_n$	$\tilde{P}_n(y): \tilde{P}_{n+1}(y) = (y - Cs_n)\tilde{P}_n(y) - C^2t_n\tilde{P}_{n-1}(y)$

Lemma. [L. Jiu and D. Shi]

random variable	moments	monic orthogoal polynomial
X	m _n	$P_n(y): P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y)$
X + c	$\sum_{k=0}^{n} \binom{n}{k} m_k c^{n-k}$	$\bar{P}_n(y): \bar{P}_{n+1}(y) = (y - s_n - c)\bar{P}_n(y) - t_n\bar{P}_{n-1}(y)$
CX	$C^n m_n$	$\tilde{P}_n(y): \tilde{P}_{n+1}(y) = (y - Cs_n)\tilde{P}_n(y) - C^2t_n\tilde{P}_{n-1}(y)$

Proof.

$$\bar{P}_n(y) := P_n(y-c)$$
 and $\tilde{P}_n(y) := C^n P_n(y/C)$.

Lemma. [L. Jiu and D. Shi]

random variable	moments	monic orthogoal polynomial
X	m _n	$P_n(y): P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y)$
X + c	$\sum_{k=0}^{n} \binom{n}{k} m_k c^{n-k}$	$\bar{P}_n(y): \bar{P}_{n+1}(y) = (y - s_n - c)\bar{P}_n(y) - t_n\bar{P}_{n-1}(y)$
CX	$C^n m_n$	$\tilde{P}_n(y): \tilde{P}_{n+1}(y) = (y - Cs_n)\tilde{P}_n(y) - C^2t_n\tilde{P}_{n-1}(y)$

Proof.

$$\bar{P}_n(y) := P_n(y-c)$$
 and $\tilde{P}_n(y) := C^n P_n(y/C)$.

Theorem. [L. Jiu and D. Shi]

$$B_{n} \qquad R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_{n}(y) - \frac{n^{4}}{4(2n+1)(2n-1)} R_{n-1}(y)$$

$$B_{n}(x) \qquad \varrho_{n+1}(y) = \left(y - x + \frac{1}{2}\right) \varrho_{n}(y) + \frac{n^{4}}{4(2n+1)(2n-1)} \varrho_{n-1}(y)$$

$$E_{n} \qquad Q_{n+1}(y) = yQ_{n}(y) + n^{2}Q_{n-1}(y)$$

$$E_{n}(x) \qquad \Omega_{n+1}(y) = \left(y - x + \frac{1}{2}\right) \Omega_{n}(y) + \frac{n^{2}}{4} \Omega_{n-1}(y)$$

2nd Task

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ightharpoonup and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

2nd Task

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

Recall that

▶ Bernoulli polynomial $B_n(x)$: ▶ Euler polynomial $E_n(x)$:

$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x)\frac{t^n}{n!}; \qquad \frac{2}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x)\frac{t^n}{n!};$$

Bernoulli polynomial of order p $B_n^{(p)}(x)$: Euler polynomial of order p $E_n^{(p)}(x)$:

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!}; \ \left(\frac{2}{e^z + 1}\right)^p e^{xz} = \sum_{n=0}^{\infty} E_n^{(p)}(x) \frac{z^n}{n!};$$

$$\left(e^{t}-1\right) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \left(x^{n}\right)^{n} \left(e^{z}+1\right) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \left(x^{n}\right)^{n} \left(e^{z}+1\right)$$

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right] \qquad E_n(x) = \mathbb{E}\left[\left(iL_E + x - \frac{1}{2}\right)^n\right]$$

2nd Task

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

Recall that

Bernoulli polynomial $B_n(x)$: Euler polynomial $E_n(x)$:

$$\frac{t}{e^{t}-1}e^{xt} = \sum_{n=0}^{\infty} B_{n}(x)\frac{t^{n}}{n!}; \qquad \frac{2}{e^{t}+1}e^{xt} = \sum_{n=0}^{\infty} E_{n}(x)\frac{t^{n}}{n!};$$

Bernoulli polynomial of order Euler polynomial of order p $p B_n^{(p)}(x)$:

 $F_n^{(p)}(x)$

$$\left(\frac{t}{e^t - 1}\right)^p e^{xt} = \sum_{n=0}^{\infty} B_n^{(p)}(x) \frac{t^n}{n!}; \ \left(\frac{2}{e^z + 1}\right)^p e^{xz} = \sum_{n=0}^{\infty} E_n^{(p)}(x) \frac{z^n}{n!};$$

$$B_n(x) = \mathbb{E}\left[\left(iL_B + x - \frac{1}{2}\right)^n\right] \qquad E_n(x) = \mathbb{E}\left[\left(iL_E + x - \frac{1}{2}\right)^n\right]$$

$$B_n^{(p)}(x) = \mathbb{E}[?] \quad E_n^{(p)}(x) = \mathbb{E}[?]$$

Let X and Y be two independent variables, with moments m_n and m'_n , respectively.

Let X and Y be two independent variables, with moments m_n and m'_n , respectively. In addition, define the moment generating functions:

$$F(t) := \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} m_n \frac{t^n}{n!} \quad \text{and} \quad G(t) := \mathbb{E}\left[e^{tY}\right] = \sum_{n=0}^{\infty} m'_n \frac{t^n}{n!}$$

Let X and Y be two independent variables, with moments m_n and m'_n , respectively. In addition, define the moment generating functions:

$$F(t) := \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} m_n \frac{t^n}{n!} \quad \text{and} \quad G(t) := \mathbb{E}\left[e^{tY}\right] = \sum_{n=0}^{\infty} m'_n \frac{t^n}{n!}$$

Then,

$$\mathbb{E}\left[(X+Y)^n\right] = \sum_{k=0}^n \binom{n}{k} m_k m'_{n-k}$$

Let X and Y be two independent variables, with moments m_n and m'_n , respectively. In addition, define the moment generating functions:

$$F(t) := \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} m_n \frac{t^n}{n!} \quad \text{and} \quad G(t) := \mathbb{E}\left[e^{tY}\right] = \sum_{n=0}^{\infty} m'_n \frac{t^n}{n!}$$

Then,

$$\mathbb{E}\left[(X+Y)^n\right] = \sum_{k=0}^n \binom{n}{k} m_k m'_{n-k}$$

and

$$\mathbb{E}\left[e^{t(X+Y)}\right]=F(t)G(t).$$

Let X and Y be two independent variables, with moments m_n and m'_n , respectively. In addition, define the moment generating functions:

$$F(t) := \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} m_n \frac{t^n}{n!} \quad \text{and} \quad G(t) := \mathbb{E}\left[e^{tY}\right] = \sum_{n=0}^{\infty} m'_n \frac{t^n}{n!}$$

Then,

$$\mathbb{E}\left[(X+Y)^n\right] = \sum_{k=0}^n \binom{n}{k} m_k m'_{n-k}$$

and

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F(t)G(t).$$

Consider a sequence of independent and identically distributed (i. i. d.) random variables $\left(L_{E_j}\right)_{j=1}^p$ with each $L_{E_j}\sim L_E(\mathrm{sech}(t))$. Then $E_n^{(p)}(x)$ is the nth moment of a certain random variable:

$$E_n^{(p)}(x) = \mathbb{E}\left[\left(x + \sum_{j=1}^p i L_{E_j} - \frac{p}{2}\right)^n\right].$$

Let X and Y be two independent variables, with moments m_n and m'_n , respectively. In addition, define the moment generating functions:

$$F(t) := \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} m_n \frac{t^n}{n!} \quad \text{and} \quad G(t) := \mathbb{E}\left[e^{tY}\right] = \sum_{n=0}^{\infty} m'_n \frac{t^n}{n!}$$

Then,

$$\mathbb{E}\left[(X+Y)^n\right] = \sum_{k=0}^n \binom{n}{k} m_k m'_{n-k}$$

and

$$\mathbb{E}\left[e^{t(X+Y)}\right] = F(t)G(t).$$

Consider a sequence of independent and identically distributed (i. i. d.) random variables $\left(L_{E_j}\right)_{j=1}^p$ with each $L_{E_j}\sim L_E(\mathrm{sech}(t))$. Then $E_n^{(p)}(x)$ is the nth moment of a certain random variable:

$$E_n^{(p)}(x) = \mathbb{E}\left[\left(x + \sum_{j=1}^p iL_{E_j} - \frac{p}{2}\right)^n\right].$$

Similarly, given an i. i. d. $\left(L_{B_j}\right)_{j=1}^p$ with $L_{B_j}\sim L_B(\pi\sec h^2(\pi t)/2)$,

$$B_n^{(p)}(x) = \mathbb{E}\left[\left(x + \sum_{j=1}^p iL_{B_j} - \frac{p}{2}\right)^n\right].$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & & \ddots & \ddots & \ddots \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & & \ddots & \ddots & \ddots \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m} := (m_n)_{n=0}^{\infty}$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n .

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & & \ddots & \ddots & \ddots \ \vdots & \vdots & \ddots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (1) If $m_{2k+1} = 0$ for all $k \in \mathbb{N}$, then, $s_n = 0$;

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0\leq r< n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_n P_{n-1}(y).$$

Theorem. (1) If $m_{2k+1} = 0$ for all $k \in \mathbb{N}$, then, $s_n = 0$; Recall The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & & \ddots & \ddots & \ddots \ \vdots & \vdots & \ddots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (1) If $m_{2k+1} = 0$ for all $k \in \mathbb{N}$, then, $s_n = 0$; Recall The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

And

$$E_{2k+1} = 0.$$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & & \ddots & \ddots & \ddots \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (1) If $m_{2k+1} = 0$ for all $k \in \mathbb{N}$, then, $s_n = 0$; Recall The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

And

$$E_{2k+1} = 0.$$
 $\left(\sum_{n=0}^{\infty} E_n \frac{t^n}{n!} = \frac{2e^t}{e^{2t} + 1}\right)$

Given a sequence $\mathbf{a} = (a_n)_{n=0}^{\infty}$, the *nth Hankel determinant* of \mathbf{a} is defined by

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ \vdots & \vdots & \vdots & \ddots & \vdots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

Recall that given a sequence of numbers/moments $\mathbf{m}:=(m_n)_{n=0}^\infty$, let $P_n(y)$ be the monic orthogonal polynomials with respect to m_n . Namely, for all $0 \le r < n$

$$y^r P_n(y)\bigg|_{y^k=m_k}=0.$$

Suppose P_n satisfies the three-term recurrence:

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_n P_{n-1}(y).$$

Theorem. (1) If $m_{2k+1} = 0$ for all $k \in \mathbb{N}$, then, $s_n = 0$; Recall The monic orthogonal polynomials with respect to E_n , $Q_n(y)$, satisfy

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y).$$

And

$$E_{2k+1} = 0.$$
 $\left(\sum_{n=0}^{\infty} E_n \frac{t^n}{n!} = \frac{2e^t}{e^{2t} + 1} = \operatorname{sech}(t).\right)$

$$\Delta_n\left(\mathbf{a}
ight) := \det egin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ & \ddots & \ddots & \ddots & \ddots \ \vdots & \ddots & \ddots & \ddots & \ddots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

$$\mathbf{m} := (m_n)_{n=0}^{\infty} \longleftrightarrow P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (2) Define $\mathbf{a}(c) = (a_n(c))_{n=0}^{\infty}$ by

$$a_n(c) = \sum_{k=0}^n \binom{n}{k} a_{n-k} c^k.$$

Then,

$$\Delta_{n}(\mathbf{a}(c)) = \Delta_{n}(\mathbf{a}).$$

$$\Delta_n\left(\mathbf{a}\right) := \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & a_3 & \cdots & a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

$$\mathbf{m} := (m_n)_{n=0}^{\infty} \longleftrightarrow P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (2) Define $\mathbf{a}(c) = (a_n(c))_{n=0}^{\infty}$ by

$$a_n(c) = \sum_{k=0}^n \binom{n}{k} a_{n-k} c^k.$$

Then,

$$\Delta_{n}\left(\mathbf{a}(c)\right) = \Delta_{n}\left(\mathbf{a}\right).$$

(3) [11, Thm. 11, p. 20]

$$\Delta_n(\mathbf{m}) = m_0^{n+1} (-t_1)^n (-t_2)^{n-1} \cdots (-t_{n-1})^2 (-t_n),$$

which simpliy implies that

$$-t_n = rac{\Delta_n(\mathbf{m})\Delta_{n-2}(\mathbf{m})}{[\Delta_{n-1}(\mathbf{m})]^2}.$$

$$\Delta_n\left(\mathbf{a}\right) := \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & a_3 & \cdots & a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix}.$$

$$\mathbf{m} := (m_n)_{n=0}^{\infty} \longleftrightarrow P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y).$$

Theorem. (2) Define $\mathbf{a}(c) = (a_n(c))_{n=0}^{\infty}$ by

$$a_n(c) = \sum_{k=0}^n \binom{n}{k} a_{n-k} c^k.$$

Then,

$$\Delta_n(\mathbf{a}(c)) = \Delta_n(\mathbf{a}).$$

(3) [11, Thm. 11, p. 20]

$$\Delta_n(\mathbf{m}) = m_0^{n+1} (-t_1)^n (-t_2)^{n-1} \cdots (-t_{n-1})^2 (-t_n),$$

which simpliy implies that

$$-t_n = \frac{\Delta_n(\mathbf{m})\Delta_{n-2}(\mathbf{m})}{[\Delta_{n-1}(\mathbf{m})]^2}.$$

 $P_n(y): P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y)$ $\begin{array}{c|c}
X & m_n \\
X + c & \sum_{k=1}^{n} {n \choose k} m_k c^{n-k} & \bar{P}_n(y) : & \underline{\bar{P}_{n+1}(y) = (y - s_n - c)} \bar{P}_n(y) - t_n \bar{P}_{n-1}(y) \\
\hline
\end{array}$ Recall

Theorem. (4)

$$P_n(y) = \frac{1}{\Delta_{n-1}(\mathbf{m})} \det \begin{pmatrix} m_0 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & m_3 & \cdots & m_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1} & m_n & m_{n+1} & \cdots & m_{2n-1} \\ 1 & y & y^2 & \cdots & y^n \end{pmatrix}$$

Theorem. (4)

$$P_n(y) = \frac{1}{\Delta_{n-1}(\mathbf{m})} \det \begin{pmatrix} m_0 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & m_3 & \cdots & m_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1} & m_n & m_{n+1} & \cdots & m_{2n-1} \\ 1 & y & y^2 & \cdots & y^n \end{pmatrix}$$

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

Theorem. (4)

$$P_n(y) = \frac{1}{\Delta_{n-1}(\mathbf{m})} \det \begin{pmatrix} m_0 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & m_3 & \cdots & m_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1} & m_n & m_{n+1} & \cdots & m_{2n-1} \\ 1 & y & y^2 & \cdots & y^n \end{pmatrix}$$

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

By the generating functions

$$\left(\frac{t}{e^t-1}\right)^p \mathrm{e}^{\mathrm{x}t} = \sum_{n=0}^\infty B_n^{(p)}(x) \frac{t^n}{n!} \quad \text{and} \quad \left(\frac{2}{\mathrm{e}^z+1}\right)^p \mathrm{e}^{\mathrm{x}z} = \sum_{n=0}^\infty E_n^{(p)}(x) \frac{z^n}{n!},$$

we have

Theorem. (4)

$$P_n(y) = \frac{1}{\Delta_{n-1}(\mathbf{m})} \det \begin{pmatrix} m_0 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & m_3 & \cdots & m_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1} & m_n & m_{n+1} & \cdots & m_{2n-1} \\ 1 & y & y^2 & \cdots & y^n \end{pmatrix}$$

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

By the generating functions

$$\left(\frac{t}{\mathrm{e}^t-1}\right)^p\mathrm{e}^{\mathrm{x}t} = \sum_{n=0}^\infty B_n^{(p)}(x)\frac{t^n}{n!} \quad \text{and} \quad \left(\frac{2}{\mathrm{e}^z+1}\right)^p\mathrm{e}^{\mathrm{x}z} = \sum_{n=0}^\infty E_n^{(p)}(x)\frac{z^n}{n!},$$

we have

$$B_{2k+1}^{(p)}(p/2) = 0 = E_{2k+1}^{(p)}(p/2).$$

Theorem. (4)

$$P_n(y) = \frac{1}{\Delta_{n-1}(\mathbf{m})} \det \begin{pmatrix} m_0 & m_1 & m_2 & \cdots & m_n \\ m_1 & m_2 & m_3 & \cdots & m_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1} & m_n & m_{n+1} & \cdots & m_{2n-1} \\ 1 & y & y^2 & \cdots & y^n \end{pmatrix}$$

- Find the orthogonal polynomials with respect to $B_n^{(p)}(x)$, denoted by $\varrho_n^{(p)}(y)$;
- ▶ and the orthogonal polynomials with respect to $E_n^{(p)}(x)$, denoted by $\Omega_n^{(p)}(y)$.

By the generating functions

$$\left(\frac{t}{e^t-1}\right)^p \mathrm{e}^{\mathrm{x}t} = \sum_{n=0}^\infty B_n^{(p)}(x) \frac{t^n}{n!} \quad \text{and} \quad \left(\frac{2}{\mathrm{e}^z+1}\right)^p \mathrm{e}^{\mathrm{x}z} = \sum_{n=0}^\infty E_n^{(p)}(x) \frac{z^n}{n!},$$

we have

$$B_{2k+1}^{(p)}(p/2) = 0 = E_{2k+1}^{(p)}(p/2).$$

Then, with the lemma for shifted and scaled random variables, we see

$$\varrho_{n+1}^{(p)}(y) = \left(y - x + \frac{p}{2}\right) \varrho_n^{(p)}(y) + b_n^{(p)} \varrho_{n-1}^{(p)}(y)$$

$$\Omega_{n+1}^{(p)}(y) = \left(y - x + \frac{p}{2}\right) \Omega_n^{(p)}(y) + e_n^{(p)} \Omega_n^{(p)}(y)$$

The first several terms of $b_n^{(p)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	<u>5</u> 12
n = 2	4 15	13 30 372 455	3 5	2 <u>3</u> 30	14 15
n = 3	81	372	1339	2109	1527
	140	455	1260	1610	980
n = 4	64	3736	138688	668543	171830
	63	2821	84357	339549	74823
n = 5	625	1245075	299594775	42601023200	3638564965
	396	636988	127670972	15509529057	1154491404

The first several terms of $b_n^{(p)}$ is given in the following table

p=1	p=2	p = 3	p = 4	p = 5
$\frac{1}{12}$	$\frac{1}{6}$	1/4	$\frac{1}{3}$	<u>5</u> 12
	13 30	3 5	2 <u>3</u>	14 15
81	372 455	1339 1260	2109	1527 980
64	<u>3736</u>	138688	668543	171830 74823
625	1245075	299594775	42601023200	3638564965 1154491404
	1 12 4 15 81 140 64 63	$\begin{array}{c cccc} & & & & & & \\ \hline 1 & & & & & \\ \hline 1 & & & & & \\ \hline 4 & & & & 13 \\ \hline 15 & & & & 30 \\ 81 & & & & 372 \\ \hline 140 & & & 455 \\ \hline 64 & & & 3736 \\ \hline 63 & & & 2821 \\ \hline 625 & & 1245075 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

► The first column has formula

$$\frac{n^4}{4(2n+1)(2n-1)}$$

The first several terms of $b_n^{(p)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{12}$	<u>1</u> 6	$\frac{1}{4}$	$\frac{1}{3}$	<u>5</u> 12
n = 2	4 15	13 30 372 455	<u>3</u> 5	2 <u>3</u> 30	14 15
n = 3	81	372	1339	2109	1527
	140	455	1260	1610	980
n = 4	64	3736	138688	668543	171830
	63	2821	84357	339549	74823
n = 5	625	1245075	299594775	42601023200	3638564965
	396	636988	127670972	15509529057	1154491404

► The first column has formula

$$\frac{n^4}{4(2n+1)(2n-1)}$$

$$R_{n+1}(y) = \left(y - x + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

The first several terms of $b_n^{(\rho)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	<u>5</u> 12
n = 2	4 15	13 30 372 455	3 5	2 <u>3</u> 30	14 15
n = 3	81	372	1339	2109	1527
	140	455	1260	1610	980
n = 4	64	3736	138688	668543	171830
	63	2821	84357	339549	74823
n = 5	625	1245075	299594775	42601023200	3638564965
	396	636988	127670972	15509529057	1154491404

► The first column has formula

$$\frac{1}{4(2n+1)(2n-1)}$$

$$R_{n+1}(y) = \left(y - x + \frac{1}{2}\right) R_n(y) - \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

- ▶ The first row is p/12
- ▶ The second row is (5p + 3)/30

	p=1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$
n = 2	4 15	13 30	3 5	2 <u>3</u> 30	14 15
n = 3	81 140	13 30 372 455	1339 1260	2109 1610	1527 980
n = 4	64 63	3736 2821	138688 84357	668543 339549	171830 74823
n = 5	625 396	1245075 636988	299594775 127670972	42601023200 15509529057	3638564965 1154491404

Conjecture. [K. Dilcher]

$$b_3^{(p)} = \frac{175p^2 + 315p + 158}{140(2p+3)};$$

$$b_4^{(p)} = \frac{6125p^4 + 25725p^3 + 41965p^2 + 29547p + 7230}{21(5p+3)(175p^2 + 315p + 158)};$$

$$b_5^{(p)} = 25(5p+3)(471625p^6 + 3678675p^5 + 12324235p^4 + 22096305p^3 + 22009540p^2 + 11549748p + 2519472) / (132(175p^2 + 315p + 158)(6125p^4 + 25725p^3 + 41965p^2 + 29547p + 7230)).$$

$$1+2+\cdots+n = \frac{n(n+1)}{2}$$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
...

$$1^k + 2^k + \cdots + n^k = \sum_{j=0}^{k+1} a_j n^j$$
 (a polynomial in variable n of degree $k+1$)

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\dots$$

$$1^{k} + 2^{k} + \dots + n^{k} = \sum_{j=0}^{k+1} a_{j} n^{j} \text{ (a polynomial in variable } n \text{ of degree } k+1)$$

$$= \frac{1}{k+1} [B_{k+1} (n+1) - B_{k+1}]$$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^{k} + 2^{k} + \dots + n^{k} = \sum_{j=0}^{k+1} a_{j} n^{j} \text{ (a polynomial in variable } n \text{ of degree } k+1\text{)}$$
$$= \frac{1}{k+1} \left[B_{k+1} \left(n+1 \right) - B_{k+1} \right]$$

random variable	moments	monic orthogoal polynomial
X	m _n	$P_n(y): P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y)$
X + c	$\sum_{k=0}^{n} \binom{n}{k} m_k c^{n-k}$	$\bar{P}_n(y): \bar{P}_{n+1}(y) = (y - s_n - c)\bar{P}_n(y) - t_n\bar{P}_{n-1}(y)$
CX	$C^n m_n$	$\tilde{P}_n(y): \tilde{P}_{n+1}(y) = (y - Cs_n)\tilde{P}_n(y) - C^2t_n\tilde{P}_{n-1}(y)$
X + Y	Convolution	???

How about $e_n^{(p)}$?

The first several terms of $e_n^{(p)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{4}$	1	94	4	<u>25</u> 4
n=2	$\frac{1}{2}$	$\frac{3}{2}$	3	5	25 4 15 2 35 4
n = 3	1	2	1 <u>5</u>	6	<u>35</u>
n = 4	1	<u>5</u>	9 2	7	10
n = 5	<u>5</u> 4	3	2 <u>1</u> 4	8	<u>45</u> 4

How about $e_n^{(p)}$?

The first several terms of $e_n^{(p)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	<i>p</i> = 5
n = 1	$\frac{1}{4}$	1	94	4	<u>25</u> 4
n = 2	$\frac{1}{2}$	$\frac{3}{2}$	3	5	$\frac{15}{2}$
n = 3	1	2	15 4	6	25 4 15 2 35 4
n = 4	1	<u>5</u>	9 2	7	10
n = 5	<u>5</u> 4	3	2 <u>1</u> 4	8	<u>45</u> 4

How about $e_n^{(p)}$?

The first several terms of $e_n^{(p)}$ is given in the following table

	p = 1	p = 2	p = 3	p = 4	p = 5
n = 1	$\frac{1}{4}$	1	94	4	<u>25</u> 4
n = 2	$\frac{1}{2}$	$\frac{3}{2}$	3	5	1 <u>5</u>
n = 3	1	2	15 4	6	25 4 15 2 35 4
n = 4	1	<u>5</u>	9 2	7	10
n = 5	<u>5</u> 4	3	2 <u>1</u> 4	8	<u>45</u> 4

$$e_n^{(p)} = \frac{n(n+p-1)}{4}$$

► Theorem. [L. Jiu and D. Shi]

$$\Omega_{n+1}^{(p)}(y) = \left(y - x + \frac{p}{2}\right)\Omega_n^{(p)}(y) + \frac{n(n+p-1)}{4}\Omega_{n-1}^{(p)}(y).$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \,_2F_1\left(\frac{-n,\lambda+iy}{2\lambda}\bigg| 1 - e^{-2i\phi}\right),$$

where $(x)_n:=x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{matrix} \right| t \right) := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \cdot \frac{t^n}{n!}.$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \,_2F_1\left(\frac{-n,\lambda+iy}{2\lambda}\bigg| 1 - e^{-2i\phi}\right),$$

where $(x)_n := x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{matrix} \right| t \right) := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \cdot \frac{t^n}{n!}.$$

Recurrence.

$$(n+1)P_{n+1}^{(\lambda)}(y;\phi) = 2(y\sin\phi + (n+\lambda)\cos\phi)P_n^{(\lambda)}(y;\phi) - (n+2\lambda-1)P_{n-1}^{(\lambda)}(y;\phi).$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \, {}_2F_1\left(\frac{-n, \lambda+iy}{2\lambda} \middle| 1 - e^{-2i\phi} \right),$$

where $(x)_n:=x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1,\ldots,a_p\\b_1,\ldots,b_q \end{matrix} \right| t \right) := \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \cdot \frac{t^n}{n!}.$$

Recurrence.

$$(n+1)P_{n+1}^{(\lambda)}(y;\phi) = 2(y\sin\phi + (n+\lambda)\cos\phi)P_n^{(\lambda)}(y;\phi) - (n+2\lambda-1)P_{n-1}^{(\lambda)}(y;\phi).$$

KEY.

$$P_n^{(\lambda+\mu)}(y_1+y_2,\phi) = \sum_{k=0}^n P_k^{(\lambda)}(y_1,\phi) P_{n-k}^{(\mu)}(y_2,\phi).$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \, _2F_1\left(\frac{-n, \lambda + iy}{2\lambda} \middle| 1 - e^{-2i\phi} \right),$$

where $(x)_n:=x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1,\ldots,a_p\\b_1,\ldots,b_q \end{matrix} \right| t \right) := \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \cdot \frac{t^n}{n!}.$$

Recurrence.

$$(n+1)P_{n+1}^{(\lambda)}(y;\phi) = 2(y\sin\phi + (n+\lambda)\cos\phi)P_n^{(\lambda)}(y;\phi) - (n+2\lambda-1)P_{n-1}^{(\lambda)}(y;\phi).$$

KEY.

$$P_n^{(\lambda+\mu)}(y_1+y_2,\phi) = \sum_{k=0}^n P_k^{(\lambda)}(y_1,\phi) P_{n-k}^{(\mu)}(y_2,\phi).$$

Theorem. [L. Jiu and D. Shi]

$$\Omega_n^{(p)}(y) = \frac{i^n n!}{2^n} P_n^{\left(\frac{p}{2}\right)} \left(-i \left(y - x + \frac{p}{2} \right); \frac{\pi}{2} \right).$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \, _2F_1\left(\frac{-n, \lambda + iy}{2\lambda} \middle| 1 - e^{-2i\phi} \right),$$

where $(x)_n := x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{matrix} \right| t \right) := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \cdot \frac{t^n}{n!}.$$

Recurrence.

$$(n+1)P_{n+1}^{(\lambda)}(y;\phi) = 2(y\sin\phi + (n+\lambda)\cos\phi)P_n^{(\lambda)}(y;\phi) - (n+2\lambda-1)P_{n-1}^{(\lambda)}(y;\phi).$$

KEY.

$$P_n^{(\lambda+\mu)}(y_1+y_2,\phi) = \sum_{k=0}^n P_k^{(\lambda)}(y_1,\phi) P_{n-k}^{(\mu)}(y_2,\phi).$$

Theorem. [L. Jiu and D. Shi]

$$\Omega_n^{(p)}(y) = \frac{i^n n!}{2^n} P_n^{\left(\frac{p}{2}\right)} \left(-i \left(y - x + \frac{p}{2} \right); \frac{\pi}{2} \right).$$

Fact. Euler numbers E_n have monic orthogonal polynomials $Q_n(y)$:

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y),$$

The Meixner-Pollaczek polynomials are defined by

$$P_n^{(\lambda)}(y;\phi) := \frac{(2\lambda)_n}{n!} e^{in\phi} \, {}_2F_1\left(\frac{-n, \lambda+iy}{2\lambda} \middle| 1 - e^{-2i\phi} \right),$$

where $(x)_n := x(x+1)(x+2)\cdots(x+n-1)$ is the Pochhammer symbol and ${}_2F_1$ is the hypergeometric function

$${}_pF_q\left(\left. \begin{matrix} a_1,\ldots,a_p\\b_1,\ldots,b_q \end{matrix} \right| t \right) := \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(b_1)_n\cdots(b_q)_n} \cdot \frac{t^n}{n!}.$$

Recurrence.

$$(n+1)P_{n+1}^{(\lambda)}(y;\phi) = 2(y\sin\phi + (n+\lambda)\cos\phi)P_n^{(\lambda)}(y;\phi) - (n+2\lambda-1)P_{n-1}^{(\lambda)}(y;\phi).$$

KEY.

$$P_n^{(\lambda+\mu)}(y_1+y_2,\phi) = \sum_{k=0}^n P_k^{(\lambda)}(y_1,\phi) P_{n-k}^{(\mu)}(y_2,\phi).$$

Theorem. [L. Jiu and D. Shi]

$$\Omega_n^{(p)}(y) = \frac{i^n n!}{2^n} P_n^{\left(\frac{p}{2}\right)} \left(-i \left(y - x + \frac{p}{2} \right); \frac{\pi}{2} \right).$$

Fact. Euler numbers E_n have monic orthogonal polynomials $Q_n(y)$:

$$Q_{n+1}(y) = yQ_n(y) + n^2Q_{n-1}(y),$$

$$Q_n(y) := i^n n! P_n^{\left(\frac{1}{2}\right)} \left(\frac{-iy}{2}; \frac{\pi}{2}\right).$$

Continuous Hahn Polynomials

The Continuous Hahn polynomial is defined by

$$p_n(x;a,b,c,d) = i^n \frac{(a+c)_n(a+d)_n}{n!} \, _3F_2 \left(\begin{array}{c} -n,n+a+b+c+d-1,a+ix \\ a+c,a+d \end{array} \right| 1 \right).$$

Continuous Hahn Polynomials

The Continuous Hahn polynomial is defined by

$$p_n(x;a,b,c,d) = i^n \frac{(a+c)_n(a+d)_n}{n!} \, _3F_2 \left(\begin{array}{c} -n,n+a+b+c+d-1,a+ix \\ a+c,a+d \end{array} \right| 1 \right).$$

Fact. Recall the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$. Then,

$$\varrho_n(y) = \frac{n!}{(n+1)_n} p_n\left(y; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right).$$

Continuous Hahn Polynomials

The Continuous Hahn polynomial is defined by

$$p_n(x;a,b,c,d) = i^n \frac{(a+c)_n(a+d)_n}{n!} \, {}_3F_2 \left(\begin{matrix} -n,n+a+b+c+d-1,a+ix \\ a+c,a+d \end{matrix} \right| 1 \right).$$

Fact. Recall the orthogonal polynomials with respect to $B_n(x)$, denoted by $\varrho_n(y)$. Then,

$$\varrho_n(y) = \frac{n!}{(n+1)_n} p_n\left(y; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right).$$

The key property for Meixner-Pollaczek polynomials

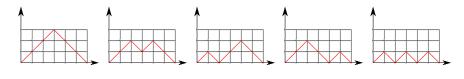
$$P_n^{(\lambda+\mu)}(y_1+y_2,\phi) = \sum_{k=0}^n P_k^{(\lambda)}(y_1,\phi) P_{n-k}^{(\mu)}(y_2,\phi)$$

does not hold for continuous Hahn polynomials.

What's Next?

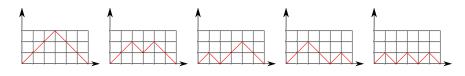
What's Next?

Recall that



$$-61 = \textit{E}_6 = (-1)^3 \left(3^2 2^2 1^2 + 2^2 2^2 1^2 + 1^2 2^2 1^2 + 2^2 1^2 1^2 + 1^2 1^2 1^2 \right).$$

Recall that

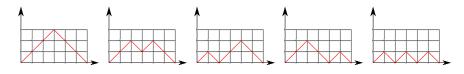


$$-61 = \textit{E}_6 = (-1)^3 \left(3^2 2^2 1^2 + 2^2 2^2 1^2 + 1^2 2^2 1^2 + 2^2 1^2 1^2 + 1^2 1^2 1^2 \right).$$

Aim:

$$E_{2n} = \sum_{i=1}^{C_n} f(-1^2, -2^2, \dots, -n^2)$$
?

Recall that



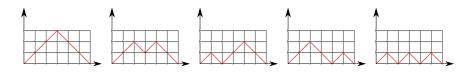
$$-61 = \textit{E}_6 = (-1)^3 \left(3^2 2^2 1^2 + 2^2 2^2 1^2 + 1^2 2^2 1^2 + 2^2 1^2 1^2 + 1^2 1^2 1^2 \right).$$

Aim:

$$E_{2n} = \sum_{j=1}^{C_n} f(-1^2, -2^2, \dots, -n^2)$$
?

Try: recall $\textit{C}_1=1,\;\textit{C}_2=2,\;\textit{C}_3=5\;\text{and}\;\textit{C}_4=14.$ "Chalk Work"

Recall that



$$-61 = E_6 = (-1)^3 \left(3^2 2^2 1^2 + 2^2 2^2 1^2 + 1^2 2^2 1^2 + 2^2 1^2 1^2 + 1^2 1^2 1^2\right).$$

Aim:

$$E_{2n} = \sum_{j=1}^{C_n} f(-1^2, -2^2, \dots, -n^2)$$
?

Try: recall $\mathit{C}_1=1$, $\mathit{C}_2=2$, $\mathit{C}_3=5$ and $\mathit{C}_4=14$. "Chalk Work"

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right)R_n(y) + \frac{n^4}{4(2n+1)(2n-1)}R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	<u>1</u>	0	$-\frac{1}{30}$

$$y^r R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right)R_n(y) + \frac{n^4}{4(2n+1)(2n-1)}R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	<u>1</u>	0	$-\frac{1}{30}$

$$y^r R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$ightharpoonup R_0 = 1;$$

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right)R_n(y) + \frac{n^4}{4(2n+1)(2n-1)}R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	<u>1</u>	0	$-\frac{1}{30}$

$$y^r R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

- $ightharpoonup R_0 = 1;$
- $ightharpoonup R_1 = y + \frac{1}{2}$:

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	<u>1</u>	0	$-\frac{1}{30}$

$$y'R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$R_0 = 1$$
;

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	<u>1</u>	0	$-\frac{1}{30}$

$$y'R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$ightharpoonup R_0 = 1;$$

$$P_1 = y + \frac{1}{2} : R_1(y) \Big|_{y^k = B_k} = B_1 + \frac{1}{2}B_0 = -\frac{1}{2} + \frac{1}{2} = 0;$$

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$

$$y'R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$ightharpoonup R_0 = 1;$$

$$P_1 = y + \frac{1}{2} : R_1(y) \Big|_{y^k = B_k} = B_1 + \frac{1}{2}B_0 = -\frac{1}{2} + \frac{1}{2} = 0;$$

$$R_2 = \left(y + \frac{1}{2}\right) \left(y + \frac{1}{2}\right) + \frac{1}{12} = y^2 + y + \frac{1}{3};$$

$$R_2(y)\Big|_{y^k = B_k} = B_2 + B_1 + \frac{1}{3} = \frac{1}{6} - \frac{1}{2} + \frac{1}{3} = 0;$$

$$R_{n+1}(y) = \left(y + \frac{1}{2}\right) R_n(y) + \frac{n^4}{4(2n+1)(2n-1)} R_{n-1}(y)$$

n	0	1	2	3	4
B _n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$

$$y^r R_n(y)\Big|_{y^k=B_k}=0 \Rightarrow R_n(y)\Big|_{y^k=B_k}=0$$

$$R_0 = 1;$$

$$R_1 = y + \frac{1}{2} \colon R_1(y) \Big|_{y^k = B_k} = B_1 + \frac{1}{2}B_0 = -\frac{1}{2} + \frac{1}{2} = 0;$$

$$R_2 = \left(y + \frac{1}{2}\right) \left(y + \frac{1}{2}\right) + \frac{1}{12} = y^2 + y + \frac{1}{3};$$

$$R_2(y)\Big|_{y^k = B_k} = B_2 + B_1 + \frac{1}{3} = \frac{1}{6} - \frac{1}{2} + \frac{1}{3} = 0;$$

$$R_3 = \left(y + \frac{1}{2}\right) \left(y^2 + y + \frac{1}{3}\right) + \frac{4}{15} \left(y + \frac{1}{2}\right) = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}:$$

$$R_3(y)\Big|_{y^k = B_k} = B_3 + \frac{3}{2}B_2 + \frac{11}{10}B_1 + \frac{3}{10} = 0;$$

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$
$$P(n; y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$P(n;y) \Big|_{y^k = B_k} = 0.$$

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$P(n;y) \Big|_{y^k = B_k} = 0.$$

Recall that deg $R_n = n$, and $R_n(y)\Big|_{y^k = B_k}$ for n > 0.

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$P(n;y) \Big|_{y^k = B_k} = 0.$$

Recall that deg $R_n = n$, and $R_n(y)\Big|_{y^k = B_k}$ for n > 0.

Proposition.

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$P(n;y) \Big|_{y^k = B_k} = 0.$$

Recall that deg $R_n = n$, and $R_n(y)\Big|_{y^k = B_k}$ for n > 0.

Proposition.

$$P(n;y) = \sum_{k=1}^{n-1} \alpha_{n,k} R_k(y).$$

For some constants $\alpha_{n,k}$ that are independent of y.

$$B_n(x+1) - B_n(x) = nx^{n-1} \Leftrightarrow B_n(x+1) - B_n(x) - nx^{n-1} = 0$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1} (= \bar{P}_{n-1}(y))$$

$$P(n;y)\Big|_{y^k = B_k} = 0.$$

Recall that deg $R_n = n$, and $R_n(y)\Big|_{y^k = B_k}$ for n > 0.

Proposition.

$$P(n;y) = \sum_{k=1}^{n-1} \alpha_{n,k} R_k(y).$$

For some constants $\alpha_{n,k}$ that are independent of y. *Proof.* By induction on the degree of P.

$$P(n; y) = (y + x + 1)^{n} - (y + x)^{n} - nx^{n-1}$$

$$R_{1} = y + \frac{1}{2}$$

$$R_{2} = y^{2} + y + \frac{1}{3}$$

$$R_{3} = y^{3} + \frac{3}{2}y^{2} + \frac{11}{10}y + \frac{3}{10}$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x$$

$$P(n; y) = (y + x + 1)^{n} - (y + x)^{n} - nx^{n-1}$$

$$R_{1} = y + \frac{1}{2}$$

$$R_{2} = y^{2} + y + \frac{1}{3}$$

$$R_{3} = y^{3} + \frac{3}{2}y^{2} + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(3; y) = 3y^2 + (3+6x)y + 3x + 1$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(3; y) = 3y^2 + (3+6x)y + 3x + 1 = 3(y^2 + y + \frac{1}{3}) +$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(3; y) = 3y^2 + (3+6x)y + 3x + 1 = 3\left(y^2 + y + \frac{1}{3}\right) + 6xy + 3x$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(3; y) = 3y^2 + (3+6x)y + 3x + 1 = 3(y^2 + y + \frac{1}{3}) + 6xy + 3x$$

$$P(n;y) = (y+x+1)^n - (y+x)^n - nx^{n-1}$$

$$R_1 = y + \frac{1}{2}$$

$$R_2 = y^2 + y + \frac{1}{3}$$

$$R_3 = y^3 + \frac{3}{2}y^2 + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

►
$$P(3; y) = 3y^2 + (3 + 6x)y + 3x + 1 = 3(y^2 + y + \frac{1}{3}) + 6xy + 3x$$

= $3R_2 + 6xR_1$;

$$P(n; y) = (y + x + 1)^{n} - (y + x)^{n} - nx^{n-1}$$

$$R_{1} = y + \frac{1}{2}$$

$$R_{2} = y^{2} + y + \frac{1}{3}$$

$$R_{3} = y^{3} + \frac{3}{2}y^{2} + \frac{11}{10}y + \frac{3}{10}$$

$$P(2; y) = (y + x + 1)^2 - (y + x)^2 - 2x = 2y + 1 = 2R_1;$$

$$P(3; y) = 3y^2 + (3+6x)y + 3x + 1 = 3(y^2 + y + \frac{1}{3}) + 6xy + 3x$$

= $3R_2 + 6xR_1$;

$$P(4; y) = 4R_3 + 12xR_2 + (12x^2 - \frac{2}{5})R_1.$$

► *q*-analogue?

- ► *q*-analogue?
- ▶ hypergeometric Bernoulli numbers:

- ▶ *q*-analogue?
- hypergeometric Bernoulli numbers:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} = \frac{1}{{}_1F_1\left(\frac{1}{2} \middle| t\right)}.$$

- ▶ q-analogue?
- hypergeometric Bernoulli numbers:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} = \frac{1}{{}_1F_1\left(\frac{1}{2} \middle| t\right)}.$$

$$\frac{e^t-1}{t}=\sum_{n=0}^{\infty}\frac{t^n}{(n+1)!}$$

- ▶ q-analogue?
- hypergeometric Bernoulli numbers:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} = \frac{1}{{}_1F_1\left(\frac{1}{2} \middle| t\right)}.$$

$$\frac{e^{t}-1}{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{(n+1)!} = \sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{t^{n}}{n!}$$

- ▶ q-analogue?
- hypergeometric Bernoulli numbers:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} = \frac{1}{{}_1F_1\left(\frac{1}{2}\middle|t\right)}.$$

$$\frac{e^t - 1}{t} = \sum_{n=0}^{\infty} \frac{t^n}{(n+1)!} = \sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{(1)_n}{(2)_n} \cdot \frac{t^n}{n!}.$$

- ▶ q-analogue?
- hypergeometric Bernoulli numbers:

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} = \frac{1}{{}_1F_1\left(\frac{1}{2}\left|t\right)\right.}.$$

$$\frac{e^t - 1}{t} = \sum_{n=0}^{\infty} \frac{t^n}{(n+1)!} = \sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{(1)_n}{(2)_n} \cdot \frac{t^n}{n!}.$$

Define

$$\frac{e^{xt}}{{}_1F_1\left(\begin{smallmatrix}a\\a+b\end{smallmatrix}\middle|t\right)}=\sum_{n=0}^\infty B_n^{(a,b)}(x)\frac{t^n}{n!}.$$

Thank you!

- W. A. Al-Salam and L. Carlitz, Some determinants of Bernoulli, Euler and related numbers, *Port. Math.* **18** (1959), 91–99.
- W. A. Al-Salam and T. S. Chihara, Convolutions of orthonormal polynomials, *SIAM J. Math. Anal.* **7** (1976), 16–28.
- L. Carlitz, Bernoulli and Euler, numbers and orthogonal polynomials, Duke Math. J. **26** (1959), 1–16.
- H. Chen, Bernoulli numbers via determinants, Internat. J. Math. Ed. Sci. Tech. 34 (2003), 291–297.
- A. Dixit, V. H. Moll, and C. Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, *Ramanujan J.* **33** (2014), 379–422.
- P. Flajolet and R. Sedgewick, *Analytic Combinatorics*, Cambridge Univ. Press, 2010.
- A. Hamdi and J. Zeng, Orthogonal polynomials and operator orderings, *J. Math. Phys.* 51 (2010), Article 043506.
- M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, 2005.

- L. Jiu, V. H. Moll, and C. Vignat, Identities for generalized Euler polynomials, *Integral Transforms Spec. Funct.* **25** (2014), 777–789.
- R. Koekoek, P. A. Lesky, and R. F. Swarttouw, *Hypergeometric Orthogonal Polynomials and Their q-Analogues*, Springer, 2010.
- C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien *Combin.* **42** (1999), Article B42q.
- H. Liang, L. Mu, and Y. Wang, Catalan-like numbers and Stieltjes moment sequences, *Discrete Math.* **339** (2016), 484–488.
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, (eds.), *NIST Handbook of Mathematical Functions*, Cambridge Univ. Press, 2010.
- J. A. Shohat and J. D. Tamarkin, *The Problem of Moments*, AMS, 1943.
- R. P. Stanley, Catalan numbers, Cambridge Univ. Press, 2015.
- J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956), 305–320.