Orthogonal Polynomials for Higher-Order Euler Polynomials

Lin JIU (Joint work with Diane Yahui SHI)

Department of Mathematics and Statistics, Dalhousie University
The 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA) @ RISC

DALHOUSIE UNIVERSITY

July 23rd, 2019

Main object

Definition. The Euler polynomial of order p, denoted by $E_{n}^{(p)}(x)$, is defined by

$$
\left(\frac{2}{e^{t}+1}\right)^{p} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(p)}(x) \frac{t^{n}}{n!}
$$

- When $p=1, E_{n}^{(1)}(x)=E_{n}(x)$ are the (usual) Euler polynomials

$$
\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}
$$

- $E_{n}=2^{n} E_{n}(1 / 2)$ are the Euler numbers

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}
$$

Table

$$
\begin{gathered}
\left(\frac{2}{e^{z}+1}\right)^{p} e^{x z}=\sum_{n=0}^{\infty} E_{n}^{(p)}(x) \frac{z^{n}}{n!} \\
E_{n}^{(1)}(x)=E_{n}(x) \quad E_{n}=2^{n} E_{n}(1 / 2)
\end{gathered}
$$

	$p=1$	$p=2$	$p=3$
$n=0$	1	1	1
$n=1$	$x-\frac{1}{2}$	$x-1$	$x-\frac{3}{2}$
$n=2$	$x^{2}-x$	$x^{2}-2 x+\frac{1}{2}$	$x^{2}-3 x+\frac{3}{2}$
$n=3$	$x^{3}-\frac{3}{2} x^{2}+\frac{1}{4}$	$x^{3}-3 x^{2}+\frac{3}{2} x+\frac{1}{2}$	$x^{3}-\frac{9}{2} x^{2}+\frac{9}{2} x$
$n=4$	$x^{4}-2 x^{3}+x$	$x^{4}-4 x^{3}+3 x^{2}+2 x-1$	$x^{4}-6 x^{3}+9 x^{2}-3$

Random variable

Let X be a random variable with density function $p(t)$ on \mathbb{R} and with moments m_{n}, i.e.,

$$
m_{n}=\mathbb{E}\left[X^{n}\right]=\int_{\mathbb{R}} t^{n} p(t) \mathrm{d} t
$$

Let $P_{n}(y)$ be the monic orthogonal polynomials with respect to X (or w. r. t. m_{n}), i.e., $\operatorname{deg} P_{n}=n, \operatorname{LC}\left[P_{n}\right]=1$, and

$$
\int_{\mathbb{R}} P_{m}(t) P_{n}(t) p(t) \mathrm{d} t=c_{n} \delta_{m, n}= \begin{cases}c_{n}, & \text { if } m=n \\ 0, & \text { otherwise }\end{cases}
$$

Equivalently, for all $0 \leq r<n$

$$
\left.y^{r} P_{n}(y)\right|_{y^{k}=m_{k}}=0
$$

P_{n} satisfies a three-term recurrence: for some sequences $\left(s_{n}\right)_{n \geq 0}$ and $\left(t_{n}\right)_{n \geq 1}$,

$$
P_{n+1}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y)
$$

Hankel determinants

$$
\begin{aligned}
&\left.y^{r} P_{n}(y)\right|_{y^{k}=m_{k}}=0 P_{n+1}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y) . \\
& P_{n}(y)= \operatorname{det}\left(\begin{array}{cccc}
m_{0} & m_{1} & \cdots & m_{n} \\
m_{1} & m_{2} & \cdots & m_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n-1} & m_{n} & \cdots & m_{2 n-1} \\
1 & y & \cdots & y^{n}
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{cccc}
m_{0} & m_{1} & \cdots & m_{n-1} \\
m_{1} & m_{2} & \cdots & m_{n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n-1} & m_{n} & \cdots & m_{2 n-2}
\end{array}\right)
\end{aligned}
$$

Orthogonal polynomials

Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic orthogonal polynomials, denoted by $Q_{n}(y)$, with respect to E_{n}. More precisely, they obtained $Q_{0}(y)=1, Q_{1}(y)=y$ and for $n \geq 1$,

$$
Q_{n+1}(y)=y Q_{n}(y)+n^{2} Q_{n-1}(y)
$$

Example

$$
\frac{2}{e^{z}+e^{-z}}=\sum_{n=0}^{\infty} E_{n} \frac{z^{n}}{n!} \quad \begin{array}{|c|c|c|c|c|c|}
\hline n & 0 & 1 & 2 & 3 & 4 \\
\hline E_{n} & 1 & 0 & -1 & 0 & 5 \\
\hline
\end{array}
$$

$$
Q_{2}(y)=y Q_{1}(y)+1^{2} Q_{0}(y)=y^{2}+1
$$

$$
\begin{gathered}
\left.y^{0} Q_{2}(y)\right|_{y^{k}=E_{k}}=\left.\left(y^{2}+1\right)\right|_{y^{k}=E_{k}}=E_{2}+1=0 ; \\
\left.y Q_{2}(y)\right|_{y^{k}=E_{k}}=\left.\left(y^{3}+y\right)\right|_{y^{k}=E_{k}}=0 .
\end{gathered}
$$

Probabilistic interpretation

Let L_{E} be a random variable with density function $p_{E}(t):=\operatorname{sech}(\pi t)$ on \mathbb{R}.

$$
\mathbb{E}\left[L_{E}^{n}\right]=\int_{\mathbb{R}} t^{n} \operatorname{sech}(\pi t) \mathrm{d} t=\frac{(-1)^{\frac{n}{2}} E_{n}}{2^{n}} \Longrightarrow \mathbb{E}\left[\left(2 i L_{E}\right)^{n}\right]=E_{n}
$$

- Also consider a sequence of independent and identically distributed (i. i. d.) random variables $\left(L_{E_{i}}\right)_{i=1}^{p}$ with each $L_{E_{i}}$ having the same distribution as L_{E}. Then $E_{n}^{(p)}(x)$ is the nth moment of a certain random variable:

$$
E_{n}^{(p)}(x)=\mathbb{E}\left[\left(x+\sum_{i=1}^{p} i L_{E_{i}}-\frac{p}{2}\right)^{n}\right]
$$

Main result

E_{n}	$Q_{n+1}(y)=y Q_{n}(y)+n^{2} Q_{n-1}(y)$
$E_{n}(x)$	$? ? ?$
$E_{n}^{(p)}(x)$	$? ? ?$

Let $\Omega_{n}^{(p)}(y)$ be the orthogonal polynomials with respect to $E_{n}^{(p)}(x)$, i.e., for any $0 \leq r<n$,

$$
\left.y^{r} \Omega_{n}^{(p)}(y)\right|_{y^{k}=E_{k}^{(p)}(x)}=0
$$

Also let $\Omega_{n}(y)=\Omega_{n}^{(1)}(y)$ be the orthogonal polynomials w. r. t. $E_{n}(x)$.

Theorem (L. Jiu and D. Shi)

$$
\begin{gathered}
\Omega_{n+1}^{(p)}(y)=\left(y-x+\frac{p}{2}\right) \Omega_{n}^{(p)}(y)+\frac{n(n+p-1)}{4} \Omega_{n-1}^{(p)}(y) . \\
\Omega_{n}^{(p)}(y)=\frac{i^{n} n!}{2^{n}} P_{n}^{\left(\frac{p}{2}\right)}\left(-i\left(y-x+\frac{p}{2}\right) ; \frac{\pi}{2}\right) .
\end{gathered}
$$

Meixner-Pollaczek polynomials

The Meixner-Pollaczek polynomials are defined by

$$
P_{n}^{(\lambda)}(y ; \phi):=\frac{(2 \lambda)_{n}}{n!} e^{i n \phi}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, \lambda+i y \\
2 \lambda
\end{array} \right\rvert\, 1-e^{-2 i \phi}\right)
$$

where

$$
(x)_{n}:=x(x+1)(x+2) \cdots(x+n-1)
$$

and

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
c
\end{array} \right\rvert\, t\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \cdot \frac{t^{n}}{n!} .
$$

E_{n}	$Q_{n+1}(y)=y Q_{n}(y)+n^{2} Q_{n-1}(y)$	
$E_{n}(x)$	$\Omega_{n+1}(y)=\left(y-x+\frac{1}{2}\right) \Omega_{n}^{(p)}(y)+\frac{n^{2}}{4} \Omega_{n-1}^{(p)}(y)$.	$Q_{n} \xrightarrow{K 1} \Omega_{n} \xrightarrow{K 2} \Omega_{n}^{(p)}$
$E_{n}^{(p)}(x)$	$\Omega_{n+1}^{(p)}(y)=\left(y-x+\frac{p}{2}\right) \Omega_{n}^{(p)}(y)+\frac{n(n+p-1)}{4} \Omega_{n-1}^{(p)}(y)$.	

Key 1 (K1)

Lemma (L. Jiu and D. Shi)

random variable	moments	monic orthogonal polynomial
X	m_{n}	$P_{n}(y): \quad P_{n+1}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y)$
$X+c$	$\sum_{k=0}^{n}\binom{n}{k} m_{k} c^{n-k}$	$\bar{P}_{n}(y): \bar{P}_{n+1}(y)=\left(y-s_{n}-c\right) \bar{P}_{n}(y)-t_{n} \bar{P}_{n-1}(y)$
$C X$	$C^{n} m_{n}$	$\tilde{P}_{n}(y): \tilde{P}_{n+1}(y)=\left(y-C s_{n}\right) \tilde{P}_{n}(y)-C^{2} t_{n} \tilde{P}_{n-1}(y)$

Recall that

$$
\begin{gathered}
\mathbb{E}\left[\left(2 i L_{E}\right)^{n}\right]=E_{n} \quad \text { and } \quad E_{n}(x)=\mathbb{E}\left[\left(x+i L_{E}-\frac{1}{2}\right)^{n}\right] \\
X=i L_{E}, \quad C=\frac{1}{2}, \quad c=x-\frac{1}{2}
\end{gathered}
$$

Key 2 (K2)

For the Meixner-Pollaczek polynomials

$$
P_{n}^{(\lambda)}(y ; \phi):=\frac{(2 \lambda)_{n}}{n!} e^{i n \phi}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, \lambda+i y \\
2 \lambda
\end{array} \right\rvert\, 1-e^{-2 i \phi}\right),
$$

KEY.

$$
\begin{aligned}
& P_{n}^{(\lambda+\mu)}\left(y_{1}+y_{2}, \phi\right)=\sum_{k=0}^{n} P_{k}^{(\lambda)}\left(y_{1}, \phi\right) P_{n-k}^{(\mu)}\left(y_{2}, \phi\right) . \\
& \quad Q_{n}(y)=i^{n} n!P_{n}^{\left(\frac{1}{2}\right)}\left(\frac{-i y}{2} ; \frac{\pi}{2}\right) \\
& \Longrightarrow \Omega_{n}^{(p)}(y)=\frac{i^{n} n!}{2^{n}} P_{n}^{\left(\frac{p}{2}\right)}\left(-i\left(y-x+\frac{p}{2}\right) ; \frac{\pi}{2}\right)
\end{aligned}
$$

Bernoulli Polynomials

Bernoulli polynomials $B_{n}(x)$ and Bernoulli numbers $B_{n}=B_{n}(0)$:

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

Theorem (L. Jiu and D. Shi)

Let $\varrho_{n}(y)$ be the orthogonal polynomials with respect to $B_{n}(x)$, Then,

$$
\varrho_{n+1}(y)=\left(y-x+\frac{1}{2}\right) \varrho_{n}(y)+\frac{n^{4}}{4(2 n+1)(2 n-1)} \varrho_{n-1}(y) .
$$

In particular,

$$
\varrho_{n}(y)=\frac{n!}{(n+1)_{n}} p_{n}\left(y ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),
$$

where $p_{n}(y ; a, b, c, d)$ is the continuous Hahn polynomial.

Bernoulli Polynomials

Generalization to $B_{n}^{(p)}(x)$:

$$
\left(\frac{t}{e^{t}-1}\right)^{p} e^{t x}=\sum_{n=0}^{\infty} B_{n}^{(p)}(x) \frac{t^{n}}{n!} ?
$$

The key property for Meixner-Pollaczek polynomials

$$
P_{n}^{(\lambda+\mu)}\left(y_{1}+y_{2}, \phi\right)=\sum_{k=0}^{n} P_{k}^{(\lambda)}\left(y_{1}, \phi\right) P_{n-k}^{(\mu)}\left(y_{2}, \phi\right)
$$

does not hold for continuous Hahn polynomials.

random variable	moments	monic orthogonal polynomial
X	m_{n}	$P_{n}(y): P_{n+\mathbf{1}}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-\mathbf{1}}(y)$
$X+c$	$\sum_{k=\mathbf{0}}^{n}\binom{n}{k} m_{k} c^{n-k}$	$\bar{P}_{n}(y): \bar{P}_{n+\mathbf{1}}(y)=\left(y-s_{n}-c\right) \bar{P}_{n}(y)-t_{n} \bar{P}_{n-\mathbf{1}}(y)$
$C X$	$C^{n} m_{n}$	$\tilde{P}_{n}(y): \tilde{P}_{n+\mathbf{1}}(y)=\left(y-C s_{n}\right) \tilde{P}_{n}(y)-C^{\mathbf{2}} t_{n} \tilde{P}_{n-\mathbf{1}}(y)$
$X+Y$	Convolution	
$? ? ?$		

Conjecture on $B_{n}^{(p)}(x)$

Let $\varrho_{n+1}^{(p)}(y)$ be the monic orthogonal polynomial with respect to $B_{n}^{(p)}(x)$, and assume the three-term recurrence is

$$
\varrho_{n+1}^{(p)}(y)=\left(y-a_{n}^{(p)}\right) \varrho_{n}^{(p)}(y)+b_{n}^{(p)} \varrho_{n-1}(y) .
$$

Proposition. [L. Jiu and D. Shi] $a_{n}^{(p)}=x-p / 2$.
The first several terms of $b_{n}^{(p)}$ is given in the following table

	$p=1$	$p=2$	$p=3$	$p=4$	$p=5$
$n=1$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$
$n=2$	$\frac{4}{15}$	$\frac{13}{30}$	$\frac{3}{5}$	$\frac{23}{30}$	$\frac{14}{15}$
$n=3$	$\frac{81}{140}$	$\frac{372}{455}$	$\frac{1339}{1260}$	$\frac{2109}{1610}$	$\frac{1527}{980}$
$n=4$	$\frac{64}{63}$	$\frac{3736}{2821}$	$\frac{138688}{8437}$	$\frac{668543}{335549}$	$\frac{171830}{74823}$
$n=5$	$\frac{625}{396}$	$\frac{1245075}{636988}$	$\frac{299594775}{127670972}$	$\frac{42601023200}{15509529057}$	$\frac{3638564965}{1154491404}$

The first column has formula $\frac{n^{4}}{4(2 n+1)(2 n-1)}$

Conjecture on $B_{n}^{(p)}(x)$

	$p=1$	$p=2$	$p=3$	$p=4$	$p=5$
$n=1$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$
$n=2$	$\frac{4}{15}$	$\frac{13}{30}$	$\frac{3}{5}$	$\frac{23}{30}$	$\frac{14}{15}$
$n=3$	$\frac{81}{140}$	$\frac{372}{455}$	$\frac{1339}{1260}$	$\frac{2109}{1610}$	$\frac{1527}{980}$
$n=4$	$\frac{64}{63}$	$\frac{3736}{2821}$	$\frac{138688}{84357}$	$\frac{668543}{339549}$	$\frac{171830}{74823}$
$n=5$	$\frac{625}{396}$	$\frac{1245075}{636988}$	$\frac{299594775}{127670972}$	$\frac{42601023200}{15509529057}$	$\frac{3638564965}{1154491404}$

Conjecture (K. Dilcher)

$$
\begin{gathered}
b_{3}^{(p)}=\frac{175 p^{2}+315 p+158}{140(2 p+3)} \\
b_{4}^{(p)}=\frac{6125 p^{4}+25725 p^{3}+41965 p^{2}+29547 p+7230}{21(5 p+3)\left(175 p^{2}+315 p+158\right)}
\end{gathered}
$$

$b_{5}^{(p)}=25(5 p+3)\left(471625 p^{6}+3678675 p^{5}+12324235 p^{4}+22096305 p^{3}+\right.$ $\left.22009540 p^{2}+11549748 p+2519472\right) /\left(132\left(175 p^{2}+315 p+158\right)\left(6125 p^{4}+\right.\right.$ $\left.\left.25725 p^{3}+41965 p^{2}+29547 p+7230\right)\right)$.

End

Thank you!

W．A．Al－Salam and L．Carlitz，Some determinants of Bernoulli，Euler and related numbers，Port．Math． 18 （1959），91－99．
固 W．A．Al－Salam and T．S．Chihara，Convolutions of orthonormal polynomials，SIAM J．Math．Anal． 7 （1976），16－28．
围 L．Carlitz，Bernoulli and Euler，numbers and orthogonal polynomials， Duke Math．J． 26 （1959），1－16．
围 H．Chen，Bernoulli numbers via determinants， Internat．J．Math．Ed．Sci．Tech． 34 （2003），291－297．
（ A．Dixit，V．H．Moll，and C．Vignat，The Zagier modification of Bernoulli numbers and a polynomial extension．Part I，Ramanujan J． 33 （2014），379－422．
图 P．Flajolet and R．Sedgewick，Analytic Combinatorics，Cambridge Univ．Press， 2010.
围 A．Hamdi and J．Zeng，Orthogonal polynomials and operator orderings， J．Math．Phys． 51 （2010），Article 043506.

围 M．E．H．Ismail，Classical and Quantum Orthogonal Polynomials in One Variable，Cambridge Univ．Press， 2005.
（ L．Jiu，V．H．Moll，and C．Vignat，Identities for generalized Euler polynomials，Integral Transforms Spec．Funct． 25 （2014），777－789．
固 R．Koekoek，P．A．Lesky，and R．F．Swarttouw，Hypergeometric Orthogonal Polynomials and Their q－Analogues，Springer， 2010.
囯 C．Krattenthaler，Advanced determinant calculus，Séminaire Lotharingien Combin． 42 （1999），Article B42q．
H．Liang，L．Mu，and Y．Wang，Catalan－like numbers and Stieltjes moment sequences，Discrete Math． 339 （2016），484－488．

用 F．W．J．Olver，D．W．Lozier，R．F．Boisvert，and C．W．Clark，（eds．）， NIST Handbook of Mathematical Functions，Cambridge Univ．Press， 2010.

围 J．A．Shohat and J．D．Tamarkin，The Problem of Moments，AMS， 1943.

R R．P．Stanley，Catalan numbers，Cambridge Univ．Press， 2015.

囯 J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956), 305-320.

