Hankel Determinants on Sequences Related to Bernoulli and Euler Polynomials

Lin JIU (@DKU)

Suzhou Area Youth Mathematicians 1st Annual Workshop

Nov. 14th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Acknowledgment

This is joint work with Dr. Karl Dilcher @ Dalhousie University, Halifax, NS, Canada

and supported by Natural Sciences and Engineering Research Council of Canada, Grant # 145628481.

Hankel Determinants

Definition

Given a sequence $a = (a_k)_{k=0}^{\infty}$, the *n*-th Hankel determinant of a is defined by

$$H_n(\mathbf{a}) := \det_{0 \le i,j \le n} (a_{i+j}) = \det \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & \cdots & a_{2n} \end{pmatrix}.$$

Hankel Determinants

Definition

Given a sequence $a = (a_k)_{k=0}^{\infty}$, the *n*-th *Hankel determinant* of a is defined by

$$H_n(\mathbf{a}) := \det_{0 \leq i,j \leq n}(a_{i+j}) = \det \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & \cdots & a_{2n} \end{pmatrix}.$$

Example

Let $\mathbf{b} = (B_n)_{n=0}^{\infty}$ be the sequence of Bernoulli numbers, determined by the generating function

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hankel Determinants

Definition

Given a sequence $a = (a_k)_{k=0}^{\infty}$, the *n*-th *Hankel determinant* of a is defined by

$$H_n(\mathbf{a}) := \det_{0 \leq i,j \leq n}(a_{i+j}) = \det \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & \cdots & a_{2n} \end{pmatrix}.$$

Example

Let $\mathbf{b} = (B_n)_{n=0}^{\infty}$ be the sequence of Bernoulli numbers, determined by the generating function

$$\frac{t}{e^t-1}=\sum_{n=0}^{\infty}B_n\frac{t^n}{n!}$$

. Then, the first few terms of $H_n(b)$ are

$$1, -\frac{1}{12}, -\frac{1}{540}, \frac{1}{42000}, \frac{1}{3215625}, -\frac{4}{623959875}, -\frac{64}{213746467935}, \quad \text{ for } 1, -\frac{1}{213746467935}, \quad \text{ for } 1, -\frac{1}{21374676767}, \quad \text{ for } 1, -\frac{1}{21374676767}, \quad \text{ for } 1, -\frac{1}{2137467$$

Suppose we are given a sequence $c = (c_0, c_1, ...)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$c_k = \int_{\mathbb{R}} y^k d\mu(y), \qquad k = 0, 1, 2, \dots$$

if and only if the corresponding Hankel determinants satisfy $\underline{H_n(c) > 0}$ for all $n \ge 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Suppose we are given a sequence $c = (c_0, c_1, ...)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$c_k = \int_{\mathbb{R}} y^k d\mu(y), \qquad k = 0, 1, 2, \dots$$

if and only if the corresponding Hankel determinants satisfy $\underline{H_n(c) > 0}$ for all $n \ge 0$. $(\tilde{B}_n = i^n B_n)$

Suppose we are given a sequence $c = (c_0, c_1, ...)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$c_k = \int_{\mathbb{R}} y^k d\mu(y), \qquad k = 0, 1, 2, \dots$$

if and only if the corresponding Hankel determinants satisfy $\underline{H_n(c) > 0}$ for all $n \ge 0$. $(\tilde{B}_n = i^n B_n)$ The monic orthogonal polynomials $P_n(y)$ w. r. t. μ/c , which satisfy, for $0 \le r \le n$,

$$y^{r}P_{n}(y)\Big|_{y^{k}=c_{k}}=\frac{H_{n}(c)}{H_{n-1}(c)}\delta_{n,r}$$

Suppose we are given a sequence $c = (c_0, c_1, ...)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$c_k = \int_{\mathbb{R}} y^k d\mu(y), \qquad k = 0, 1, 2, \dots$$

if and only if the corresponding Hankel determinants satisfy $\underline{H_n(c) > 0}$ for all $n \ge 0$. $(\tilde{B}_n = i^n B_n)$ The monic orthogonal polynomials $P_n(y)$ w. r. t. μ/c , which satisfy, for $0 \le r \le n$,

$$y^{r}P_{n}(y)\Big|_{y^{k}=c_{k}}=\frac{H_{n}(c)}{H_{n-1}(c)}\delta_{n,r}$$

Since P_n satisfy a three-term recurrence

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y),$$

Suppose we are given a sequence $c = (c_0, c_1, ...)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$c_k = \int_{\mathbb{R}} y^k d\mu(y), \qquad k = 0, 1, 2, \dots$$

if and only if the corresponding Hankel determinants satisfy $\underline{H_n(c) > 0}$ for all $n \ge 0$. $(\tilde{B}_n = i^n B_n)$ The monic orthogonal polynomials $P_n(y)$ w. r. t. μ/c , which satisfy, for $0 \le r \le n$,

$$y^{r}P_{n}(y)\Big|_{y^{k}=c_{k}}=\frac{H_{n}(c)}{H_{n-1}(c)}\delta_{n,r}$$

Since P_n satisfy a three-term recurrence

$$P_{n+1}(y) = (y - s_n)P_n(y) - t_nP_{n-1}(y),$$

we have

$$H_n(\mathbf{c}) = t_1^n t_2^{n-1} \cdots t_{n-1}^2 t_n.$$

Theorem

Let $c_0 \neq 0$.

$$\sum_{k=0}^{\infty} c_k z^k = \frac{c_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_1 z^2}{1 - s_2 z - \frac{$$

Theorem Let $c_0 \neq 0$. $\sum_{k=0}^{\infty} c_k z^k = \frac{c_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_2 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_2 z - \frac{t_2$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Fact

Recall the Bernoulli polynomials $B_n(x)$

$$\frac{te^{\times t}}{e^t-1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

Theorem Let $c_0 \neq 0$. $\sum_{k=0}^{\infty} c_k z^k = \frac{c_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_2 z - \frac{t_2 z}{1 - s_2 z - \frac{t_2 z - \frac{t_2 z$

Fact

Recall the Bernoulli polynomials $B_n(x)$

$$\frac{te^{\times t}}{e^t-1}=\sum_{n=0}^{\infty}B_n(\times)\frac{t^n}{n!}\qquad B_n(\times)=\sum_{k=0}^n\binom{n}{k}B_{n-k}x^k.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem Let $c_0 \neq 0$. $\sum_{k=0}^{\infty} c_k z^k = \frac{c_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_1 z^2}{1 - s_2 z - \frac{$

Fact

Recall the Bernoulli polynomials $B_n(x)$

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \qquad B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$
$$H_n(B_k(x)) = H_n(B_k) = (-1)^{\binom{n+1}{2}} \prod_{\ell=1}^n \left(\frac{\ell^4}{4(2\ell+1)(2\ell-1)}\right)^{n+1-\ell}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem Let $c_0 \neq 0$. $\sum_{k=0}^{\infty} c_k z^k = \frac{c_0}{1 - s_0 z - \frac{t_1 z^2}{1 - s_1 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_2 z - \frac{t_2 z^2}{1 - s_2 z - \frac{t_2 z - \frac{t_2$

Fact

Recall the Bernoulli polynomials $B_n(x)$

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \qquad B_n(x) = \sum_{k=0}^n \binom{n}{k} B_{n-k} x^k.$$
$$H_n(B_k(x)) = H_n(B_k) = (-1)^{\binom{n+1}{2}} \prod_{\ell=1}^n \left(\frac{\ell^4}{4(2\ell+1)(2\ell-1)}\right)^{n+1-\ell}.$$

Definition

6

Euler polynomials $E_n(x)$ and Euler numbers E_n are defined by

$$\frac{2}{e^t + e^{-t}} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!} \qquad \frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

 $H_n(b_k) = (-1)^{\varepsilon(n)} a^{n+1} \prod_{\ell=1}^n b(\ell)^{n+1-\ell}$

b_k	$\varepsilon(n)$	a	$b(\ell)$				
B _k	$\binom{n+1}{2}$	1	$\frac{\ell^4}{4(2\ell+1)(2\ell-1)}$				
B_{k+1}	$\binom{n+2}{2}$	$\frac{1}{2}$	$\frac{\ell^2(\ell+1)^2}{4(2\ell+1)^2}$				
B_{k+2}	$\binom{n+1}{2}$	$\frac{1}{6}$	$\frac{\ell(\ell+1)^2(\ell+2)}{4(2\ell+1)(2\ell+3)}$				
B_{2k+2}	0	$\frac{1}{6}$	$\frac{\ell^3(\ell+1)(2\ell-1)(2\ell+1)^3}{(4\ell-1)(4\ell+1)^2(4\ell+3)}$				
B_{2k+4}	n+1	$\frac{1}{30}$	$\frac{\ell(\ell+1)^3(2\ell+1)^3(2\ell+3)}{(4\ell+1)(4\ell+3)^2(4\ell+5)}$				
$B_{2k}(\frac{1}{2})$	0	1	$\frac{\ell^4(2\ell-1)^4}{(4\ell-3)(4\ell-1)^2(4\ell+1)}$				
$(2^{2k+2}-1)B_{2k+2}$	0	$\frac{1}{2}$	$\ell^3(\ell+1)$				
$(2k+1)B_{2k}(\frac{1}{2})$	0	1	$\frac{\ell^6}{4(2\ell+1)(2\ell-1)}$				
$(2k+3)B_{2k+2}$	0	$\frac{1}{2}$	$\frac{\ell^3(\ell+1)^3}{4(2\ell+1)^2}$				
$B_{2k+1}(\frac{x+1}{2})$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^4(x^2 - \ell^2)}{4(2\ell + 1)(2\ell - 1)}$				
E_k	$\binom{n+1}{2}$	1	ℓ^2				
$E_k(x)$	$\binom{n+1}{2}$	1	$\frac{\ell^2}{4}$				
$E_{k+1}(1)$	$\binom{n+1}{2}$	$\frac{1}{2}$	$\frac{\ell(\ell+1)}{4}$				

E_{2k}	0	1	(:	$2\ell - 1)^2 (2\ell)^2$	
$E_{2k+1}(1)$	0	$\frac{1}{2}$	ℓ^2	$\frac{2\ell - 1)(2\ell + 1)}{4}$	
E_{2k+2}	n +	1 1	(:	$(2\ell)^2(2\ell+1)^2$	
$E_{2k+3}(1)$	n +	$1 \frac{1}{4}$	<u>ℓ(ℓ</u>	$(+1)(2\ell + 1)^2$ 4	
$(2k+1)E_{2k}$	0	1		$(2\ell)^4$	
$(2k+2)E_{2k+1}(1)$	0	1		$\ell^{3}(\ell + 1)$	
$\frac{E_{k+1}(1)}{(k+1)!}$	(ⁿ⁺¹ ₂	$\frac{1}{2}$	4(2	$\frac{1}{(\ell-1)(2\ell+1)}$	
$\frac{E_{2k+1}(1)}{(2k+1)!}$	0	$\frac{1}{2}$	$\frac{16(4\ell - 1)}{16(4\ell - 1)}$	$\frac{1}{3)(4\ell - 1)^2(4\ell + 1)}$	
$\frac{E_{2k+3}(1)}{(2k+3)!}$	n +	$1 \frac{1}{24}$	$\frac{16(4\ell - 1)}{16(4\ell - 1)}$	$\frac{1}{1)(4\ell+1)^2(4\ell+3)}$	
$E_{2k}(\frac{x+1}{2})$	$\binom{n+1}{2}$	1	$\frac{\ell^2}{4} \left(x^2 - (2\ell-1)^2\right)$		
$E_{2k+1}(\frac{x+1}{2})$	$E_{2k+1}\left(\frac{x+1}{2}\right) \qquad \binom{n+1}{2}$			$\frac{\ell^2}{4} \bigl(x^2 - (2\ell)^2 \bigr)$	
$E_{2k+2}(\frac{x+1}{2})$	$\binom{n+1}{2}$	$\frac{x^2-1}{4}$	$\frac{\ell^2}{4}(x^2-(2\ell+1)^2)$		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Real Results (K. Dilcher & L. J 2020)

b _k	$\varepsilon(n)$	а	b(ℓ)
$(2^{2k+2}-1)B_{2k+2}$	0	$\frac{1}{2}$	$\ell^3(\ell+1)$
$(2k+1)B_{2k}\left(rac{1}{2} ight)$	0	1	$\frac{\ell^{6}}{4(2\ell+1)(2\ell-1)}$
$(2k+3)B_{2k+2}$	0	$\frac{1}{2}$	$rac{\ell^{3}(\ell+1)^{3}}{4(2\ell+1)^{2}}$
$(2k+1)E_{2k}$	0	1	$16\ell^4$
$(2k+2)E_{2k+1}(1)$	0	1	$\ell^3(\ell+1)$
$B_{2k+1}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^4(x^2 - \ell^2)}{4(2\ell + 1)(2\ell - 1)}$
$E_{2k}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	1	$\frac{\ell^2}{4}(x^2-(2\ell-1)^2)$
$E_{2k+1}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^2}{4}(x^2-(2\ell)^2)$
$E_{2k+2}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x^2-1}{4}$	$\frac{\ell^2}{4}(x^2-(2\ell+1)^2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

2. $H_n(a_k)$ and $H_n(a_{2k})$ are totally different,

ヘロト ヘ週ト ヘヨト ヘヨト

æ

2. $H_n(a_k)$ and $H_n(a_{2k})$ are totally different, unless $a_{2k+1} \equiv 0$.

2. $H_n(a_k)$ and $H_n(a_{2k})$ are totally different, unless $a_{2k+1} \equiv 0$.

3. Let χ be a primitive Dirichlet character mod f. The generalized Bernoulli numbers and polynomials belonging to χ are defined by

$$\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!} \quad \text{and} \quad B_{n,\chi}(x) = \sum_{k=0}^{n} \binom{n}{k} B_{k,\chi} x^{n-k}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

2. $H_n(a_k)$ and $H_n(a_{2k})$ are totally different, unless $a_{2k+1} \equiv 0$.

3. Let χ be a primitive Dirichlet character mod f. The generalized Bernoulli numbers and polynomials belonging to χ are defined by

$$\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!} \quad \text{and} \quad B_{n,\chi}(x) = \sum_{k=0}^{n} \binom{n}{k} B_{k,\chi} x^{n-k}.$$

In particular, $\begin{bmatrix} B_{n+1,\chi_4} = -\frac{n+1}{2}E_n \end{bmatrix}$, where χ_4 is the unique non-trivial character with f = 4, i.e., $\chi_4(1) = 1$, $\chi_4(3) = -1$, and $\chi_4(2) = \chi_4(4) = 0$.

Characters

Theorem (K. Dilcher and L. J. 2020) For q = 4 or 6, let

			$b_{k}^{(j)} =$	$=\frac{1}{k+1}$	${}^{-}B_{k+1}$.,χ 2 q,j	(x), j =	= 1,	2,		
	п	1	3	5	7		n	1	5	7	11
where	<i>χ</i> 8,1	1	-1	-1	1	and	χ12,1	1	-1	-1	1
	χ8.2	1	1	-1	-1		<i>χ</i> 12,2	1	1	-1	- :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characters

Theorem (K. Dilcher and L. J. 2020) For q = 4 or 6, let

$$b_k^{(j)} = rac{1}{k+1} B_{k+1,\chi_{2q,j}}(x), \quad j=1,2,$$

	n	1	3	5	7		n	1	5	7	11
where	$\chi_{8,1}$	1	-1	-1	1	and	χ12,1	1	-1	-1	1
	χ8,2	1	1	-1	-1		χ12,2	1	1	-1	-1

$$\begin{aligned} H_{2m}(b_k^{(1)}) &= 0 \qquad \left(\tilde{q} = (q-2)/q\right) \\ H_{2m+1}(b_k^{(1)}) &= (-1)^{m+1} \left(\frac{q-2}{2}q^{2m}\right)^{2m+2} \prod_{\ell=1}^m \left(\frac{\ell^2}{4}(\tilde{q}^2 - (2\ell)^2)^{2(m+1-\ell)}\right) \\ H_{2m}(b_k^{(2)}) &= (-1)^{m+1} \frac{q^{2m(2m+1)}}{m!^2} \prod_{\ell=1}^m \left(\frac{\ell^2}{4}(\tilde{q}^2 - (2\ell-1)^2)^{2(m+1-\ell)}\right) \\ H_{2m+1}(b_k^{(2)}) &= \left(\frac{q^{2m+1}}{2}\right)^{2m+2} \prod_{\ell=0}^m \frac{\ell!^4}{16^\ell} \left(\frac{\ell^2}{4}(\tilde{q}^2 - (2\ell+1)^2)^{2(m+1-\ell)}\right) \\ &= 0 \end{aligned}$$

▶ a \leftrightarrow P_n and b \leftrightarrow Q_n

▶ a
$$\leftrightarrow$$
 P_n and b \leftrightarrow Q_n

 $\mathsf{c}=\mathsf{a}*\mathsf{b}$

$$\blacktriangleright a \leftrightarrow P_n \text{ and } b \leftrightarrow Q_n$$

$$c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k$$

$$\blacktriangleright a \leftrightarrow P_n \text{ and } b \leftrightarrow Q_n$$

$$c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$$

•
$$a \leftrightarrow P_n$$
 and $b \leftrightarrow Q_n$
 $c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$

arithmetic of continued fractions

•
$$a \leftrightarrow P_n$$
 and $b \leftrightarrow Q_n$
 $c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$

arithmetic of continued fractions

$$\frac{A_0}{A_1 + \frac{B_1}{A_2 + \frac{B_2}{A_3 + \cdots}}}$$

•
$$a \leftrightarrow P_n$$
 and $b \leftrightarrow Q_n$
 $c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$

arithmetic of continued fractions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

•
$$\mathbf{a} \leftrightarrow P_n$$
 and $\mathbf{b} \leftrightarrow Q_n$
 $\mathbf{c} = \mathbf{a} * \mathbf{b} \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$

arithmetic of continued fractions

$$\frac{A_{0}}{A_{1} + \frac{B_{1}}{A_{2} + \frac{B_{2}}{A_{3} + \cdots}}} - \frac{A_{0}}{A_{1} + \theta + \frac{B_{1}}{A_{2} + \theta + \frac{B_{2}}{A_{3} + \theta + \cdots}}}$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

• Given $\mathbf{a} = (a_0, a_1, \ldots) \leftrightarrow P_n$, there is a formula to compute $H_n(a_{k+1})$.

•
$$a \leftrightarrow P_n$$
 and $b \leftrightarrow Q_n$
 $c = a * b \Rightarrow c_n = \sum_{k=0}^n \binom{n}{k} a_{n-k} b_k \leftrightarrow R_n = ??$

arithmetic of continued fractions

$$\frac{A_{0}}{A_{1} + \frac{B_{1}}{A_{2} + \frac{B_{2}}{A_{3} + \ddots}}} - \frac{A_{0}}{A_{1} + \theta + \frac{B_{1}}{A_{2} + \theta + \frac{B_{2}}{A_{3} + \theta + \ddots}}}$$

Given a = (a₀, a₁,...) ↔ P_n, there is a formula to compute H_n(a_{k+1}). But when adding a term at the very beginning, i.e., (c, a₀, a₁,...), things are getting complicated.

Harmonic Numbers

Definition Unfortunately, we have to denote

$$H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

・ロト・4日ト・4日ト・4日・9000

Harmonic Numbers

Definition Unfortunately, we have to denote

$$H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Conjecture (K. Dilcher and L. J.)

$$H_n((2k+1)B_{2k}) = (-1)^n \prod_{\ell=1}^n \left(\frac{\ell^6}{4(2\ell+1)(2\ell-1)}\right)^{n+1-\ell} \cdot (H(n) + H(n+1))$$

Harmonic Numbers

Definition Unfortunately, we have to denote

$$H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$$

Conjecture (K. Dilcher and L. J.)

$$H_n((2k+1)B_{2k}) = (-1)^n \prod_{\ell=1}^n \left(\frac{\ell^6}{4(2\ell+1)(2\ell-1)}\right)^{n+1-\ell} \cdot (H(n) + H(n+1))$$

Theorem (K. Dilcher and L. J.)

$$H_n((2k+3)B_{2k+2}) = \frac{1}{2^{n+1}} \prod_{\ell=1}^n \left(\frac{\ell^3(\ell+1)^3}{4(2\ell+1)^2} \right)^{n+1-\ell}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Last Page

<□ > < @ > < E > < E > E のQ @

1. four conjectures involving harmonic numbers

- 1. four conjectures involving harmonic numbers
- 2. a more systematic method on finding them

Last Page

- 1. four conjectures involving harmonic numbers
- 2. a more systematic method on finding them

3. arithmetic of continued fractions

Last Page

- 1. four conjectures involving harmonic numbers
- 2. a more systematic method on finding them
- 3. arithmetic of continued fractions

Thank You!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで