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Hankel Determinants
Definition
Given a sequence a = (ak)

∞
k=0, the n-th Hankel determinant of a is

defined by

Hn(a) := det
0≤i,j≤n

(ai+j) = det


a0 a1 · · · an
a1 a2 · · · an+1
...

...
. . .

...
an an+1 · · · a2n

 .

Example
Let b = (Bn)

∞
n=0 be the sequence of Bernoulli numbers, determined by

the generating function

t

et − 1
=
∞∑
n=0

Bn
tn

n!

. Then, the first few terms of Hn(b) are

1,− 1
12
,− 1

540
,

1
42000

,
1

3215625
,− 4

623959875
,− 64

213746467935
.
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Orthogonal Polynomials
Suppose we are given a sequence c = (c0, c1, ...) of numbers; then it is
known that there exists a positive Borel measure µ on R with infinite
support such that

ck =

∫
R
ykdµ(y), k = 0, 1, 2, . . .

if and only if the corresponding Hankel determinants satisfy Hn(c) > 0
for all n ≥ 0.

(B̃n = inBn) The monic orthogonal polynomials Pn(y)
w. r. t. µ/c, which satisfy, for 0 ≤ r ≤ n ,

y rPn(y)

∣∣∣∣
yk=ck

=
Hn(c)

Hn−1(c)
δn,r

Since Pn satisfy a three-term recurrence

Pn+1(y) = (y − sn)Pn(y)− tnPn−1(y),

we have
Hn(c) = tn1 t

n−1
2 · · · t2n−1tn.
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Continued Fractions
Theorem
Let c0 6= 0. ∞∑

k=0

ckz
k =

c0

1− s0z − t1z2

1−s1z− t2z2

1−s2z−
...

Fact
Recall the Bernoulli polynomials Bn(x)

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k .

Hn(Bk(x)) = Hn(Bk) = (−1)(
n+1
2 )

n∏
`=1

(
`4

4(2`+ 1)(2`− 1)

)n+1−`

.

Definition
Euler polynomials En(x) and Euler numbers En are defined by

2
et + e−t

=
∞∑
n=0

En
tn

n!

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
.
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Hn(bk) = (−1)ε(n)an+1∏n
`=1 b(`)

n+1−`



Real Results (K. Dilcher & L. J 2020)

bk ε(n) a b(`)(
22k+2 − 1

)
B2k+2 0 1

2 `3(`+ 1)
(2k + 1)B2k

( 1
2

)
0 1 `6

4(2`+1)(2`−1)

(2k + 3)B2k+2 0 1
2

`3(`+1)3

4(2`+1)2

(2k + 1)E2k 0 1 16`4

(2k + 2)E2k+1(1) 0 1 `3(`+ 1)
B2k+1

(
x+1
2

) (
n+1
2

)
x
2

`4(x2−`2)
4(2`+1)(2`−1)

E2k
(
x+1
2

) (
n+1
2

)
1 `2

4 (x
2 − (2`− 1)2)

E2k+1
(
x+1
2

) (
n+1
2

)
x
2

`2

4 (x
2 − (2`)2)

E2k+2
(
x+1
2

) (
n+1
2

)
x2−1

4
`2

4 (x
2 − (2`+ 1)2)



Motivation

1.

n Hn

(
B2k+1

(
x+1
2

))
1 1

2x
2 − 1

48x
2(x2 − 1)

3 − 1
4320x

3(x2 − 1)(x2 − 22)

2. Hn(ak) and Hn(a2k) are totally different, unless a2k+1 ≡ 0.
3. Let χ be a primitive Dirichlet character modf . The generalized

Bernoulli numbers and polynomials belonging to χ are defined by

f∑
a=1

χ(a)teat

eft − 1
=
∞∑
n=0

Bn,χ
tn

n!
and Bn,χ(x) =

n∑
k=0

(
n

k

)
Bk,χx

n−k .

In particular, Bn+1,χ4 = −n + 1
2

En , where χ4 is the unique

non-trivial character with f = 4, i.e., χ4(1) = 1, χ4(3) = −1, and
χ4(2) = χ4(4) = 0.
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Characters
Theorem (K. Dilcher and L. J. 2020)
For q = 4 or 6, let

b
(j)
k =

1
k + 1

Bk+1,χ2q,j (x), j = 1, 2,

where
n 1 3 5 7
χ8,1 1 −1 −1 1
χ8,2 1 1 −1 −1

and
n 1 5 7 11

χ12,1 1 −1 −1 1
χ12,2 1 1 −1 −1

.

H2m(b
(1)
k ) = 0 (q̃ = (q − 2)/q)

H2m+1(b
(1)
k ) = (−1)m+1

(
q − 2
2

q2m
)2m+2 m∏

`=1

(
`2

4
(q̃2 − (2`)2

)2(m+1−`)

H2m(b
(2)
k ) = (−1)m+1 q

2m(2m+1)

m!2

m∏
`=1

(
`2

4
(q̃2 − (2`− 1)2

)2(m+1−`)

H2m+1(b
(2)
k ) =

(
q2m+1

2

)2m+2 m∏
`=0

`!4

16`

(
`2

4
(q̃2 − (2`+ 1)2

)2(m+1−`)
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Difficulties

I a↔ Pn and b↔ Qn

c = a ∗ b⇒ cn =
n∑

k=0

(
n

k

)
an−kbk ↔ Rn =??

I arithmetic of continued fractions

A0

A1 +
B1

A2+
B2

A3+

...

− A0

A1 + θ + B1
A2+θ+

B2

A3+θ+

...

I Given a = (a0, a1, . . .)↔ Pn, there is a formula to compute
Hn(ak+1). But when adding a term at the very beginning, i.e.,
(c , a0, a1, . . .), things are getting complicated.
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I Given a = (a0, a1, . . .)↔ Pn, there is a formula to compute
Hn(ak+1). But when adding a term at the very beginning, i.e.,
(c , a0, a1, . . .), things are getting complicated.
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Harmonic Numbers
Definition
Unfortunately, we have to denote

H(n) = 1+
1
2
+

1
3
+ · · ·+ 1

n
.

Conjecture (K. Dilcher and L. J.)

Hn((2k+1)B2k) = (−1)n
n∏
`=1

(
`6

4(2`+ 1)(2`− 1)

)n+1−`

·(H(n) + H(n + 1))

Theorem (K. Dilcher and L. J.)

Hn((2k + 3)B2k+2) =
1

2n+1

n∏
`=1

(
`3(`+ 1)3

4(2`+ 1)2

)n+1−`

.
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