Hankel Determinants on Sequences Related to Bernoulli and Euler Polynomials

Lin JIU (@DKU)

Suzhou Area Youth Mathematicians 1st Annual Workshop

Nov. 14th, 2020

Acknowledgment

This is joint work with Dr. Karl Dilcher @ Dalhousie University, Halifax, NS, Canada

and supported by Natural Sciences and Engineering Research Council of Canada, Grant \# 145628481.

Hankel Determinants

Definition

Given a sequence $\mathrm{a}=\left(a_{k}\right)_{k=0}^{\infty}$, the n-th Hankel determinant of a is defined by

$$
H_{n}(a):=\operatorname{det}_{0 \leq i, j \leq n}\left(a_{i+j}\right)=\operatorname{det}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

Hankel Determinants

Definition

Given a sequence $\mathrm{a}=\left(a_{k}\right)_{k=0}^{\infty}$, the n-th Hankel determinant of a is defined by

$$
H_{n}(a):=\operatorname{det}_{0 \leq i, j \leq n}\left(a_{i+j}\right)=\operatorname{det}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

Example

Let $\mathrm{b}=\left(B_{n}\right)_{n=0}^{\infty}$ be the sequence of Bernoulli numbers, determined by the generating function

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

Hankel Determinants

Definition

Given a sequence $\mathrm{a}=\left(a_{k}\right)_{k=0}^{\infty}$, the n-th Hankel determinant of a is defined by

$$
H_{n}(a):=\operatorname{det}_{0 \leq i, j \leq n}\left(a_{i+j}\right)=\operatorname{det}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

Example

Let $\mathrm{b}=\left(B_{n}\right)_{n=0}^{\infty}$ be the sequence of Bernoulli numbers, determined by the generating function

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

. Then, the first few terms of $H_{n}(\mathrm{~b})$ are

$$
1,-\frac{1}{12},-\frac{1}{540}, \frac{1}{42000}, \frac{1}{3215625},-\frac{4}{623959875},-\frac{64}{213746467935} .
$$

Orthogonal Polynomials

Suppose we are given a sequence $\mathrm{c}=\left(c_{0}, c_{1}, \ldots\right)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$
c_{k}=\int_{\mathbb{R}} y^{k} d \mu(y), \quad k=0,1,2, \ldots
$$

if and only if the corresponding Hankel determinants satisfy $H_{n}(\mathrm{c})>0$ for all $n \geq 0$.

Orthogonal Polynomials

Suppose we are given a sequence $\mathrm{c}=\left(c_{0}, c_{1}, \ldots\right)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$
c_{k}=\int_{\mathbb{R}} y^{k} d \mu(y), \quad k=0,1,2, \ldots
$$

if and only if the corresponding Hankel determinants satisfy $H_{n}(\mathrm{c})>0$ for all $n \geq 0 .\left(\tilde{B}_{n}=i^{n} B_{n}\right)$

Orthogonal Polynomials

Suppose we are given a sequence $\mathrm{c}=\left(c_{0}, c_{1}, \ldots\right)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$
c_{k}=\int_{\mathbb{R}} y^{k} d \mu(y), \quad k=0,1,2, \ldots
$$

if and only if the corresponding Hankel determinants satisfy $H_{n}(c)>0$ for all $n \geq 0$. ($\left.\tilde{B}_{n}=i^{n} B_{n}\right)$ The monic orthogonal polynomials $P_{n}(y)$ w. r. t. μ / c, which satisfy, for $0 \leq r \leq n$,

$$
\left.y^{r} P_{n}(y)\right|_{y^{k}=c_{k}}=\frac{H_{n}(\mathrm{c})}{H_{n-1}(\mathrm{c})} \delta_{n, r}
$$

Orthogonal Polynomials

Suppose we are given a sequence $\mathrm{c}=\left(c_{0}, c_{1}, \ldots\right)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$
c_{k}=\int_{\mathbb{R}} y^{k} d \mu(y), \quad k=0,1,2, \ldots
$$

if and only if the corresponding Hankel determinants satisfy $H_{n}(c)>0$ for all $n \geq 0$. ($\left.\tilde{B}_{n}=i^{n} B_{n}\right)$ The monic orthogonal polynomials $P_{n}(y)$ w. r. t. μ / c, which satisfy, for $0 \leq r \leq n$,

$$
\left.y^{r} P_{n}(y)\right|_{y^{k}=c_{k}}=\frac{H_{n}(\mathrm{c})}{H_{n-1}(\mathrm{c})} \delta_{n, r}
$$

Since P_{n} satisfy a three-term recurrence

$$
P_{n+1}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y),
$$

Orthogonal Polynomials

Suppose we are given a sequence $\mathrm{c}=\left(c_{0}, c_{1}, \ldots\right)$ of numbers; then it is known that there exists a positive Borel measure μ on \mathbb{R} with infinite support such that

$$
c_{k}=\int_{\mathbb{R}} y^{k} d \mu(y), \quad k=0,1,2, \ldots
$$

if and only if the corresponding Hankel determinants satisfy $H_{n}(c)>0$ for all $n \geq 0$. ($\left.\tilde{B}_{n}=i^{n} B_{n}\right)$ The monic orthogonal polynomials $P_{n}(y)$ w. r. t. μ / c, which satisfy, for $0 \leq r \leq n$,

$$
\left.y^{r} P_{n}(y)\right|_{y^{k}=c_{k}}=\frac{H_{n}(\mathrm{c})}{H_{n-1}(\mathrm{c})} \delta_{n, r}
$$

Since P_{n} satisfy a three-term recurrence

$$
P_{n+1}(y)=\left(y-s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y),
$$

we have

$$
H_{n}(\mathrm{c})=t_{1}^{n} t_{2}^{n-1} \cdots t_{n-1}^{2} t_{n} .
$$

Continued Fractions

Theorem
Let $c_{0} \neq 0$.

$$
\sum_{k=0}^{\infty} c_{k} z^{k}=\frac{c_{0}}{1-s_{0} z-\frac{t_{1} z^{2}}{1-s_{1} z-\frac{t_{\mathbf{2}} z^{2}}{1-s_{\mathbf{2}} z-\ddots}}}
$$

Continued Fractions

Theorem
Let $c_{0} \neq 0$.

$$
\sum_{k=0}^{\infty} c_{k} z^{k}=\frac{c_{0}}{1-s_{0} z-\frac{t_{1} z^{2}}{1-s_{1} z-\frac{t_{2} z^{2}}{}}}
$$

Fact
Recall the Bernoulli polynomials $B_{n}(x)$

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

Continued Fractions

Theorem
Let $c_{0} \neq 0$.

$$
\sum_{k=0}^{\infty} c_{k} z^{k}=\frac{c_{0}}{1-s_{0} z-\frac{t_{1} z^{2}}{1-s_{1} z-\frac{t_{2} z^{2}}{1-s_{2} z-} \ddots}}
$$

Fact
Recall the Bernoulli polynomials $B_{n}(x)$

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} x^{k}
$$

Continued Fractions

Theorem
Let $c_{0} \neq 0$.

$$
\sum_{k=0}^{\infty} c_{k} z^{k}=\frac{c_{0}}{1-s_{0} z-\frac{t_{1} z^{2}}{1-s_{1} z-\frac{t_{2} z^{2}}{1-s_{2} z-} \ddots}}
$$

Fact
Recall the Bernoulli polynomials $B_{n}(x)$

$$
\begin{gathered}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} x^{k} . \\
H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)=(-1)^{\binom{n+1}{2}} \prod_{\ell=1}^{n}\left(\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} .
\end{gathered}
$$

Continued Fractions

Theorem
Let $c_{0} \neq 0$.

$$
\sum_{k=0}^{\infty} c_{k} z^{k}=\frac{c_{0}}{1-s_{0} z-\frac{t_{1} z^{2}}{1-s_{1} z-\frac{t_{2} z^{2}}{1-s_{2} z-} \ddots}}
$$

Fact
Recall the Bernoulli polynomials $B_{n}(x)$

$$
\begin{gathered}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} x^{k} . \\
H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)=(-1)^{\binom{n+1}{2}} \prod_{\ell=1}^{n}\left(\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} .
\end{gathered}
$$

Definition

Euler polynomials $E_{n}(x)$ and Euler numbers E_{n} are defined by

$$
\frac{2}{e^{t}+e^{-t}}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \quad \frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} .
$$

$H_{n}\left(b_{k}\right)=(-1)^{\varepsilon(n)} a^{n+1} \prod_{\ell=1}^{n} b(\ell)^{n+1-\ell}$

b_{k}	$\varepsilon(n)$	a	$b(\ell)$
B_{k}	$\binom{n+1}{2}$	1	$\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}$
B_{k+1}	$\binom{n+2}{2}$	$\frac{1}{2}$	$\frac{\ell^{2}(\ell+1)^{2}}{4(2 \ell+1)^{2}}$
B_{k+2}	$\binom{n+1}{2}$	$\frac{1}{6}$	$\frac{\ell(\ell+1)^{2}(\ell+2)}{4(2 \ell+1)(2 \ell+3)}$
$B_{2 k+2}$	0	$\frac{1}{6}$	$\frac{\ell^{3}(\ell+1)(2 \ell-1)(2 \ell+1)^{3}}{(4 \ell-1)(4 \ell+1)^{2}(4 \ell+3)}$
$B_{2 k+4}$	$n+1$	$\frac{1}{30}$	$\frac{\ell(\ell+1)^{3}(2 \ell+1)^{3}(2 \ell+3)}{(4 \ell+1)(4 \ell+3)^{2}(4 \ell+5)}$
$B_{2 k}\left(\frac{1}{2}\right)$	0	1	$\frac{\ell^{4}(2 \ell-1)^{4}}{(4 \ell-3)(4 \ell-1)^{2}(4 \ell+1)}$
$E_{k+1}(1)$	$\left(2^{2 k+2}-1\right) B_{2 k+2}$	0	$\frac{1}{2}$
$E_{k}(x)$	$\binom{n+1}{2}$	$\frac{1}{2}$	$\frac{\ell^{3}(\ell+1)}{4(2 k+1) B_{2 k}\left(\frac{1}{2}\right)}$

$E_{2 k}$	0	1	$(2 \ell-1)^{2}(2 \ell)^{2}$
$E_{2 k+1}(1)$	0	$\frac{1}{2}$	$\frac{\ell^{2}(2 \ell-1)(2 \ell+1)}{4}$
$E_{2 k+2}$	$n+1$	1	$\frac{(2 \ell)^{2}(2 \ell+1)^{2}}{}$
$E_{2 k+3}(1)$	$n+1$	$\frac{1}{4}$	$\frac{\ell(\ell+1)(2 \ell+1)^{2}}{4}$
$(2 k+1) E_{2 k}$	0	1	$\frac{(2 \ell)^{4}}{(2 k+2) E_{2 k+1}(1)}$
0	1	$\frac{\ell^{3}(\ell+1)}{4(2 \ell-1)(2 \ell+1)}$	
$\frac{E_{k+1}(1)}{(k+1)!}$	$\binom{n+1}{2}$	$\frac{1}{2}$	1
$\frac{E_{2 k+1}(1)}{(2 k+1)!}$	0	$\frac{1}{2}$	$\frac{1}{16(4 \ell-3)(4 \ell-1)^{2}(4 \ell+1)}$
$\frac{E_{2 k+3}(1)}{(2 k+3)!}$	$n+1$	$\frac{1}{24}$	$\frac{1}{16(4 \ell-1)(4 \ell+1)^{2}(4 \ell+3)}$

$E_{2 k}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	1	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell-1)^{2}\right)$
$E_{2 k+1}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell)^{2}\right)$
$E_{2 k+2}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x^{2}-1}{4}$	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell+1)^{2}\right)$

Real Results (K. Dilcher \& L. J 2020)

b_{k}	$\varepsilon(n)$	a	$b(\ell)$
$\left(2^{2 k+2}-1\right) B_{2 k+2}$	0	$\frac{1}{2}$	$\ell^{3}(\ell+1)$
$(2 k+1) B_{2 k}\left(\frac{1}{2}\right)$	0	1	$\frac{\ell^{6}}{4(2 \ell+1)(2 \ell-1)}$
$(2 k+3) B_{2 k+2}$	0	$\frac{1}{2}$	$\frac{\ell^{3}(\ell+1)^{3}}{4(2 \ell+1)^{2}}$
$(2 k+1) E_{2 k}$	0	1	$16 \ell^{4}$
$(2 k+2) E_{2 k+1}(1)$	0	1	$\ell^{3}(\ell+1)$
$B_{2 k+1}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^{4}\left(x^{2} \ell^{2}\right)}{4(2 \ell+1)(2 \ell-1)}$
$E_{2 k}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	1	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell-1)^{2}\right)$
$E_{2 k+1}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x}{2}$	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell)^{2}\right)$
$E_{2 k+2}\left(\frac{x+1}{2}\right)$	$\binom{n+1}{2}$	$\frac{x^{2}-1}{4}$	$\frac{\ell^{2}}{4}\left(x^{2}-(2 \ell+1)^{2}\right)$

Motivation

Motivation

1. | n | $H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$ |
| :---: | :---: |
| 1 | $\frac{1}{2} x$ |
| 2 | $-\frac{1}{48} x^{2}\left(x^{2}-1\right)$ |
| 3 | $-\frac{1}{4320} x^{3}\left(x^{2}-1\right)\left(x^{2}-2^{2}\right)$ |
2. $H_{n}\left(a_{k}\right)$ and $H_{n}\left(a_{2 k}\right)$ are totally different,

Motivation

2. $H_{n}\left(a_{k}\right)$ and $H_{n}\left(a_{2 k}\right)$ are totally different, unless $a_{2 k+1} \equiv 0$.

Motivation

1.

n	$H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$
1	$\frac{1}{2} x$
2	$-\frac{1}{48} x^{2}\left(x^{2}-1\right)$
3	$-\frac{1}{4320} x^{3}\left(x^{2}-1\right)\left(x^{2}-2^{2}\right)$

2. $H_{n}\left(a_{k}\right)$ and $H_{n}\left(a_{2 k}\right)$ are totally different, unless $a_{2 k+1} \equiv 0$.
3. Let χ be a primitive Dirichlet character $\bmod f$. The generalized Bernoulli numbers and polynomials belonging to χ are defined by

$$
\sum_{a=1}^{f} \frac{\chi(a) t e^{a t}}{e^{f t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!} \quad \text { and } \quad B_{n, \chi}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k, \chi} x^{n-k}
$$

Motivation

1.

n	$H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$
1	$\frac{1}{2} x$
2	$-\frac{1}{48} x^{2}\left(x^{2}-1\right)$
3	$-\frac{1}{4320} x^{3}\left(x^{2}-1\right)\left(x^{2}-2^{2}\right)$

2. $H_{n}\left(a_{k}\right)$ and $H_{n}\left(a_{2 k}\right)$ are totally different, unless $a_{2 k+1} \equiv 0$.
3. Let χ be a primitive Dirichlet character $\bmod f$. The generalized Bernoulli numbers and polynomials belonging to χ are defined by

$$
\sum_{a=1}^{f} \frac{\chi(a) t e^{a t}}{e^{f t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!} \quad \text { and } \quad B_{n, \chi}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k, \chi} x^{n-k}
$$

In particular, $B_{n+1, \chi_{4}}=-\frac{n+1}{2} E_{n}$, where χ_{4} is the unique non-trivial character with $f=4$, i.e., $\chi_{4}(1)=1, \chi_{4}(3)=-1$, and $\chi_{4}(2)=\chi_{4}(4)=0$.

Characters

Theorem (K. Dilcher and L. J. 2020)
For $q=4$ or 6 , let

$$
b_{k}^{(j)}=\frac{1}{k+1} B_{k+1, \chi_{2 q, j}}(x), \quad j=1,2
$$

where \begin{tabular}{|c||c|c|c|c|}
\hlinen \& 1 \& 3 \& 5 \& 7

\cline { 2 - 10 } \& $\chi_{8,1}$ \& 1 \& -1 \& -1

\hline

 and

\hlinen \& 1 \& 5 \& 7 \& 11

\hline$\chi_{8,2}$ \& 1 \& 1 \& -1 \& -1

\hline$\chi_{12,1}$ \& 1 \& -1 \& -1 \& 1

\hline$\chi_{12,2}$ \& 1 \& 1 \& -1 \& -1

\hline
\end{tabular}

Characters

Theorem (K. Dilcher and L. J. 2020)
For $q=4$ or 6 , let

$$
b_{k}^{(j)}=\frac{1}{k+1} B_{k+1, \chi_{2 q, j}}(x), \quad j=1,2
$$

where \begin{tabular}{|c||c|c|c|c|}
\hlinen \& 1 \& 3 \& 5 \& 7

\cline { 2 - 10 } \& $\chi_{8,1}$ \& 1 \& -1 \& -1

\hline

 and

\hlinen \& 1 \& 5 \& 7 \& 11

\hline$\chi_{8,2}$ \& 1 \& 1 \& -1 \& -1

\hline$\chi_{12,1}$ \& 1 \& -1 \& -1 \& 1

\hline$\chi_{12,2}$ \& 1 \& 1 \& -1 \& -1

\hline
\end{tabular} .

$$
\begin{aligned}
H_{2 m}\left(b_{k}^{(1)}\right) & =0 \quad(\tilde{q}=(q-2) / q) \\
H_{2 m+1}\left(b_{k}^{(1)}\right) & =(-1)^{m+1}\left(\frac{q-2}{2} q^{2 m}\right)^{2 m+2} \prod_{\ell=1}^{m}\left(\frac{\ell^{2}}{4}\left(\tilde{q}^{2}-(2 \ell)^{2}\right)^{2(m+1-\ell)}\right. \\
H_{2 m}\left(b_{k}^{(2)}\right) & =(-1)^{m+1} \frac{q^{2 m(2 m+1)}}{m!^{2}} \prod_{\ell=1}^{m}\left(\frac{\ell^{2}}{4}\left(\tilde{q}^{2}-(2 \ell-1)^{2}\right)^{2(m+1-\ell)}\right. \\
H_{2 m+1}\left(b_{k}^{(2)}\right) & =\left(\frac{q^{2 m+1}}{2}\right)^{2 m+2} \prod_{\ell=0}^{m} \frac{\ell!^{4}}{16^{\ell}}\left(\frac{\ell^{2}}{4}\left(\tilde{q}^{2}-(2 \ell+1)^{2}\right)^{2(m+1-\ell)}\right.
\end{aligned}
$$

Difficulties

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
c=a * b
$$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k}
$$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

- arithmetic of continued fractions

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

- arithmetic of continued fractions

$$
\frac{A_{0}}{A_{1}+\frac{B_{1}}{A_{2}+\frac{B_{2}}{A_{3}+\ddots}}}
$$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

- arithmetic of continued fractions

$$
\frac{A_{0}}{A_{1}+\frac{B_{1}}{A_{2}+\frac{B_{2}}{A_{3}+}}}-\frac{A_{0}}{A_{1}+\theta+\frac{B_{1}}{A_{2}+\theta+\frac{B_{2}}{A_{2}+}}}
$$

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

- arithmetic of continued fractions

$$
\frac{A_{0}}{A_{1}+\frac{B_{1}}{A_{\mathbf{2}}+\frac{B_{2}}{A_{\mathbf{2}}}}}-\frac{A_{0}}{A_{1}+\theta+\frac{B_{1}}{A_{\mathbf{2}}+\theta+\frac{B_{2}}{A_{\mathbf{3}}+\theta+\ddots}}}
$$

- Given $\mathrm{a}=\left(a_{0}, a_{1}, \ldots\right) \leftrightarrow P_{n}$, there is a formula to compute $H_{n}\left(a_{k+1}\right)$.

Difficulties

- $\mathrm{a} \leftrightarrow P_{n}$ and $\mathrm{b} \leftrightarrow Q_{n}$

$$
\mathrm{c}=\mathrm{a} * \mathrm{~b} \Rightarrow c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} b_{k} \leftrightarrow R_{n}=? ?
$$

- arithmetic of continued fractions

$$
\frac{A_{0}}{A_{1}+\frac{B_{1}}{A_{2}+\frac{B_{2}}{A_{3}+\ddots}}}-\frac{A_{0}}{A_{1}+\theta+\frac{B_{1}}{A_{2}+\theta+\frac{B_{2}}{A_{2}+\theta+}}}
$$

- Given $\mathrm{a}=\left(a_{0}, a_{1}, \ldots\right) \leftrightarrow P_{n}$, there is a formula to compute $H_{n}\left(a_{k+1}\right)$. But when adding a term at the very beginning, i.e., ($\left.c, a_{0}, a_{1}, \ldots\right)$, things are getting complicated.

Harmonic Numbers

Definition

Unfortunately, we have to denote

$$
H(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Harmonic Numbers

Definition

Unfortunately, we have to denote

$$
H(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Conjecture (K. Dilcher and L. J.)

$$
H_{n}\left((2 k+1) B_{2 k}\right)=(-1)^{n} \prod_{\ell=1}^{n}\left(\frac{\ell^{6}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} \cdot(H(n)+H(n+1))
$$

Harmonic Numbers

Definition

Unfortunately, we have to denote

$$
H(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Conjecture (K. Dilcher and L. J.)
$H_{n}\left((2 k+1) B_{2 k}\right)=(-1)^{n} \prod_{\ell=1}^{n}\left(\frac{\ell^{6}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} \cdot(H(n)+H(n+1))$

Theorem (K. Dilcher and L. J.)

$$
H_{n}\left((2 k+3) B_{2 k+2}\right)=\frac{1}{2^{n+1}} \prod_{\ell=1}^{n}\left(\frac{\ell^{3}(\ell+1)^{3}}{4(2 \ell+1)^{2}}\right)^{n+1-\ell}
$$

Last Page

Last Page

1. four conjectures involving harmonic numbers

Last Page

1. four conjectures involving harmonic numbers
2. a more systematic method on finding them

Last Page

1. four conjectures involving harmonic numbers
2. a more systematic method on finding them
3. arithmetic of continued fractions

Last Page

1. four conjectures involving harmonic numbers
2. a more systematic method on finding them
3. arithmetic of continued fractions
Thank You!!
