昆山杜克大学－武汉大学数学与统计学院

学术交流会

Hankel Determinants of Sequences related to Bernoulli and Euler Polynomials

Lin Jiu
Joint work with Karl Dilcher

WHU-DKU May 27th, 2021

Karl Dilcher

Chapter 24 Bernoulli and Euler Polynomials

	K. Dilcher Dalhousie University, Halifax, Nova Scotia, Cansda.
Notation	Applications
24.1 Special Notation	24.17 Mathematical Applications
Properties	24.18 Physical Applications
24.2 Definitions and Cenerating Functions	Computation
24.3 Craphs	24.19 Methods of Computation
24.4 Basic Properties	24.20 Tables
24.5 Recurrence Relations	24.21 Software
24.6 Explicit Formulas	
24.7 Integral Representations	
24.8 Series Expansions	
24.9 Inequalities	
24.10 Arithmetic Properties	

Hankel Determinant

Hankel Determinant

Given a sequence $\mathrm{a}=\left(a_{0}, a_{1}, \ldots\right)$, the nth Hankel determinant of a is defined by

$$
H_{n}(a)=H_{n}\left(a_{k}\right):=\operatorname{det}_{0 \leq i, j \leq n}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

Hankel Determinant

Given a sequence $a=\left(a_{0}, a_{1}, \ldots\right)$, the nth Hankel determinant of a is defined by

$$
H_{n}(a)=H_{n}\left(a_{k}\right):=\operatorname{det}_{0 \leq i, j \leq n}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

$>H_{n}$ is the determinant of an $n+1$ by $n+1$ matrix (Hankel matrix);

Hankel Determinant

Given a sequence $a=\left(a_{0}, a_{1}, \ldots\right)$, the nth Hankel determinant of a is defined by

$$
H_{n}(a)=H_{n}\left(a_{k}\right):=\operatorname{det}_{0 \leq i, j \leq n}\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right)
$$

$>H_{n}$ is the determinant of an $n+1$ by $n+1$ matrix (Hankel matrix);
$>$ It is important to begin with $k=0$ for a.

Main Results: $H_{n}\left(a_{k}\right)$ for the following sequences

$$
\begin{aligned}
& B_{2 k+\mathbf{1}}\left(\frac{x+1}{2}\right), E_{2 k}\left(\frac{x+1}{2}\right), E_{2 k+\mathbf{1}}\left(\frac{x+1}{2}\right), E_{2 k+\mathbf{2}}\left(\frac{x+1}{2}\right), \\
& B_{k}\left(\frac{x+r}{q}\right)-B_{k}\left(\frac{x+s}{q}\right), E_{k}\left(\frac{x+r}{q}\right) \pm E_{k}\left(\frac{x+s}{q}\right), \\
& k E_{k-\mathbf{1}}(x), B_{k+\mathbf{1}, x_{\mathbf{8}, \mathbf{1}}}(x), B_{k+\mathbf{1}, x_{\mathbf{8}, \mathbf{2}}}(x), B_{k+\mathbf{1}, x_{\mathbf{1}, \mathbf{1}}}(x), B_{k+\mathbf{1}, x_{\mathbf{1 2}, \mathbf{2}}}(x), \\
& (2 k+1) E_{2 k},\left(2^{\mathbf{2 k + 2}}-1\right) B_{\mathbf{2 k + 2}},(2 k+1) B_{\mathbf{2} k}\left(\frac{1}{2}\right),(2 k+3) B_{\mathbf{2} k+\mathbf{2}},
\end{aligned}
$$

	B_{k-1}	$B_{2 k}$	$(2 k+1) B_{2 k}$	$\left(2^{2 k}-1\right) B_{2 k}$		
	0	1	1	0		
	$E_{2 k-2}$	$E_{k-1}(1)$	$E_{k+3}(1)$	$E_{2 k-1}(1)$	$E_{2 k+5}(1)$	$\frac{E_{k}(1)}{k!}$
	0	0	$-\frac{1}{4}$	0	$\frac{1}{2}$	1
00	$\frac{E_{2 k-1}(1)}{(2 k-1)!}$	$E_{2 k-2}\left(\frac{x+1}{2}\right)$	$(2 k+1) E_{2 k}$			
	0	0	0			

Main Results: References

1. arXiv:2105.01880 [pdf, ps, other] math.NT

Hankel Determinants of shifted sequences of Bernoulli and Euler numbers

Authors: Karl Dilcher, Lin Jiu
Abstract: Hankel determinants of sequences related to Bernoulli and Euler numbers have been studied before, and numerous identities are known. However, when a sequence is shifted by one unit, the situation often changes significantly. In this paper we use classical orthogonal polynomials and related methods to prove a general result concerning Hankel determinants for shifted sequences. We then apply this re... ∇ More
Submitted 5 May, 2021; originally announced May 2021.
MSC Class: Primary 11B68; Secondary 33D45; 11C20
2. arXiv:2007.09821 [pdf, ps, other] math:NT math.Co

Hankel Determinants of sequences related to Bernoulli and Euler Polynomials

Authors: Karl Dilcher, Lin Jiu
Abstract: We evaluate the Hankel determinants of various sequences related to Bernoulli and Euler numbers and special values of the corresponding polynomials. Some of these results arise as special cases of Hankel determinants of certain sums and differences of Bernoulli and Euler polynomials, while others are consequences of a method that uses the derivatives of Bernoulli and Euler polynomials. We also obt... ∇ More
Submitted 19 July, 2020; originally announced July 2020.
MSC Class: Primary 11 B68; Secondary 11 C 20
3. arXiv:2006.15236 [pdf, ps, other] math.NT math.CA math.CV

Orthogonal polynomials and Hankel Determinants for certain Bernoulli and Euler Polynomials
Authors: Karl Dilcher, Lin Jiu
Abstract: Using continued fraction expansions of certain polygamma functions as a main tool, we find orthogonal polynomials with respect to the odd-index Bernoulli polynomials $B_{2 k+1}(x)$ and the Euler polynomials $E_{2 k+\nu}(x)$, for $\nu=0,1,2$. In the process we also determine the corresponding Jacobi continued fractions (or J-fractions) and Hankel determinants. In all these cases the Hankel determinants... ∇ More
Submitted 26 lune 2020: orisinally announced lune 2020.

6/18

Motivation: Basic Facts on H_{n}

1. Orthogonal Polynomials and Continued Fractions

6/18

Motivation: Basic Facts on H_{n}

1. Orthogonal Polynomials and Continued Fractions

$$
\mathcal{L}\left(x^{n}\right)=a_{n}---- \text { moments of the operator } \mathcal{L}
$$

Motivation: Basic Facts on H_{n}

1. Orthogonal Polynomials and Continued Fractions

$$
\mathcal{L}\left(x^{n}\right)=a_{n}---- \text { moments of the operator } \mathcal{L}
$$

iff $H_{n}\left(a_{k}\right) \neq 0$, for $n=0,1,2, \ldots$, there exist the unique monic orthogonal polynomial sequence $P_{n}(y)$ such that
$>\operatorname{deg} P_{n}=n ;$
$>$ and $\mathcal{L}\left(P_{n}(x) P_{m}(y)\right)=\zeta_{n} \delta_{m, n} ;$

Motivation: Basic Facts on H_{n}

1. Orthogonal Polynomials and Continued Fractions

$$
\mathcal{L}\left(x^{n}\right)=a_{n}---- \text { moments of the operator } \mathcal{L}
$$

iff $H_{n}\left(a_{k}\right) \neq 0$, for $n=0,1,2, \ldots$, there exist the unique monic orthogonal polynomial sequence $P_{n}(y)$ such that
$>\operatorname{deg} P_{n}=n$;
$>$ and $\mathcal{L}\left(P_{n}(x) P_{m}(y)\right)=\zeta_{n} \delta_{m, n} ;$
Fact. $P_{n}(y)$ satisfies a 3-term recurrence

$$
P_{n+1}(y)=\left(y+s_{n}\right) P_{n}(y)-t_{n} P_{n-1}(y),
$$

with $P_{0}=1, P_{-1}=0$, for some sequences s_{n} and t_{n}. Then,

$$
H_{n}\left(a_{k}\right)=a_{0}^{n+1} t_{1}^{n} t_{2}^{n-1} \cdots t_{n} .
$$

Orthogonal Polynomials and Continued Fractions

THM.

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{a_{0}}{1+s_{0} z-\frac{t_{1} z^{2}}{1+s_{1} z-\frac{t_{2} z^{2}}{1_{+s_{2} z-}}}}
$$

Orthogonal Polynomials and Continued Fractions

THM.

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{a_{0}}{1+s_{0} z-\frac{t_{1} z^{2}}{1+s_{1} z-\frac{t_{2} z^{2}}{1+s_{2} z-} \ddots}}
$$

This is the "only" method we (and probably everyone else) used to compute Hankel determinants.

Orthogonal Polynomials and Continued Fractions

THM.

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{a_{0}}{1+s_{0} z-\frac{t_{1} z^{2}}{1+s_{1} z-\frac{t_{2} z^{2}}{1+s_{2} z-} \ddots}}
$$

This is the "only" method we (and probably everyone else) used to compute Hankel determinants.

8/18
2. Results are interesting.
2. Results are interesting.

The Bernoulli numbers/polynomials are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} \quad \text { and } \quad \sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{e^{x t} t}{e^{t}-1}
$$

2. Results are interesting.

The Bernoulli numbers/polynomials are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} \quad \text { and } \quad \sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{e^{x t} t}{e^{t}-1}
$$

Von Staudt-Clausen Theorem shows that

$$
B_{2 n}+\sum_{(p-1) \mid 2 n} \frac{1}{p} \in \mathbb{Z} .
$$

But the numerators are are rather deep and mysterious.
2. Results are interesting.

The Bernoulli numbers/polynomials are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} \quad \text { and } \quad \sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{e^{x t} t}{e^{t}-1}
$$

Von Staudt-Clausen Theorem shows that

$$
B_{2 n}+\sum_{(p-1) \mid 2 n} \frac{1}{p} \in \mathbb{Z} .
$$

But the numerators are are rather deep and mysterious. For instance,

$$
B_{12}=-\frac{691}{2 \cdot 3 \cdot 5 \cdot 7 \cdot 13}
$$

2. Results are interesting.

The Bernoulli numbers/polynomials are defined by

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} \quad \text { and } \quad \sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{e^{x t} t}{e^{t}-1}
$$

Von Staudt-Clausen Theorem shows that

$$
B_{2 n}+\sum_{(p-1) \mid 2 n} \frac{1}{p} \in \mathbb{Z} .
$$

But the numerators are are rather deep and mysterious. For instance,

$$
B_{12}=-\frac{691}{2 \cdot 3 \cdot 5 \cdot 7 \cdot 13}
$$

while

$$
H_{6}\left(B_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
B_{0} & \cdots & B_{6} \\
\vdots & \ddots & \vdots \\
B_{6} & \cdots & B_{12}
\end{array}\right)=-\frac{64}{3 \cdot 5 \cdot 7 \cdot 11 \cdot 13}
$$

Results are interesting

THM.

$$
H_{n}\left(B_{k}\right)=(-1)^{\frac{n(n+1)}{2}} \prod_{\ell=1}^{n}\left(\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} .
$$

Results are interesting

THM.

$$
H_{n}\left(B_{k}\right)=(-1)^{\frac{n(n+1)}{2}} \prod_{\ell=1}^{n}\left(\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} .
$$

n	$H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$
0	$\frac{x}{2}$
1	$-\frac{1}{48} x^{2}\left(x^{2}-1\right)$
2	$-\frac{x^{3}\left(x^{2}-1\right)^{2}\left(x^{2}-2^{2}\right)}{4320}$
3	$\frac{x^{4}\left(x^{2}-1\right)^{3}\left(x^{3}-2^{2}\right)^{2}\left(x^{2}-3^{2}\right)}{672000}$

Results are interesting

THM.

$$
H_{n}\left(B_{k}\right)=(-1)^{\frac{n(n+1)}{2}} \prod_{\ell=1}^{n}\left(\frac{\ell^{4}}{4(2 \ell+1)(2 \ell-1)}\right)^{n+1-\ell} .
$$

3. Searching for New Methods

3. Searching for New Methods

Lem.

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{2 k+1}\left(\frac{x+1}{2}\right) z^{2 k} & =\frac{1}{2 z^{2}}\left[\psi^{\prime}\left(\frac{1}{z}+\frac{1-x}{2}\right)-\psi^{\prime}\left(\frac{1}{z}+\frac{1+x}{2}\right)\right] \\
& =\frac{\frac{x}{2}}{1+\sigma_{0} z^{2}-\frac{\tau_{1} z^{4}}{1+\sigma_{1} z^{2}-\frac{\tau_{2} z^{4}}{}}},
\end{aligned}
$$

3. Searching for New Methods

Lem.

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{2 k+1}\left(\frac{x+1}{2}\right) z^{2 k} & =\frac{1}{2 z^{2}}\left[\psi^{\prime}\left(\frac{1}{z}+\frac{1-x}{2}\right)-\psi^{\prime}\left(\frac{1}{z}+\frac{1+x}{2}\right)\right] \\
& =\frac{\frac{x}{2}}{1+\sigma_{0} z^{2}-\frac{\tau_{1} z^{4}}{1+\sigma_{1} z^{2}-\frac{\tau_{2} z^{4}}{}}},
\end{aligned}
$$

$$
\begin{aligned}
\psi^{\prime}(x) & =\frac{d^{2}}{d x^{2}}(\log \Gamma(x)), \\
\sigma_{n} & =\binom{n+1}{2}-\frac{x^{2}-1}{4}, \\
\tau_{n} & =\frac{n^{4}\left(x^{2}-n^{2}\right)}{4(2 n+1)(2 n-1)}
\end{aligned}
$$

3. Searching for New Methods

Lem.

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{2 k+1}\left(\frac{x+1}{2}\right) z^{2 k} & =\frac{1}{2 z^{2}}\left[\psi^{\prime}\left(\frac{1}{z}+\frac{1-x}{2}\right)-\psi^{\prime}\left(\frac{1}{z}+\frac{1+x}{2}\right)\right] \\
& =\frac{\frac{x}{2}}{1+\sigma_{0} z^{2}-\frac{\tau_{1} z^{4}}{1+\sigma_{1} z^{2}-\frac{\tau_{2} z^{4}}{1+z_{2} z^{2}-}}}, \\
\psi^{\prime}(x) & =\frac{d^{2}}{d x^{2}}(\log \Gamma(x)), \\
\sigma_{n} & =\binom{n+1}{2}-\frac{x^{2}-1}{4}, \\
\tau_{n} & =\frac{n^{4}\left(x^{2}-n^{2}\right)}{4(2 n+1)(2 n-1)}
\end{aligned}
$$

The continued fraction can be found at, e.g.,
B. C. Berndt, Ramanujan's Notebooks, Part II . Springer-Verlag,

Know Approaches

1. Orthogonal Polynomials and Continued Fractions

Know Approaches

1. Orthogonal Polynomials and Continued Fractions

$$
B_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k}\left(\frac{x+1}{2}\right), E_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k+2}\left(\frac{x+1}{2}\right)
$$

Know Approaches

1. Orthogonal Polynomials and Continued Fractions

$$
B_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k}\left(\frac{x+1}{2}\right), E_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k+2}\left(\frac{x+1}{2}\right)
$$

Euler polynomials

$$
\sum_{n=0}^{\infty} E_{k}(x) \frac{t^{n}}{n!}=\frac{2 e^{x t}}{e^{t}+1} \quad \text { and } \quad \sum_{n=0}^{\infty} E_{k} \frac{t^{n}}{n!}=\frac{2}{e^{t}+e^{-t}}
$$

Know Approaches

1. Orthogonal Polynomials and Continued Fractions

$$
B_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k}\left(\frac{x+1}{2}\right), E_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k+2}\left(\frac{x+1}{2}\right)
$$

Euler polynomials

$$
\sum_{n=0}^{\infty} E_{k}(x) \frac{t^{n}}{n!}=\frac{2 e^{x t}}{e^{t}+1} \quad \text { and } \quad \sum_{n=0}^{\infty} E_{k} \frac{t^{n}}{n!}=\frac{2}{e^{t}+e^{-t}}
$$

For $\nu=0,1,2$, the continued fraction expressions of

$$
\sum_{k=0}^{\infty} E_{2 k+\nu}\left(\frac{x+1}{2}\right) z^{2 k}
$$

can also be found in the literature, related to $\psi(x)=[\log \Gamma(x)]^{\prime}$.
Remark. We actually spent almost a month to find those expressions.
2. Left-shifted Sequence

$$
H_{n}\left(b_{k+1}\right)=H_{n}\left(b_{k}\right) \cdot \operatorname{det}\left(\begin{array}{cccccc}
-s_{0} & 1 & 0 & 0 & \cdots & 0 \\
t_{1} & -s_{1} & 1 & 0 & \cdots & 0 \\
0 & t_{2} & -s_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & t_{n} & -s_{n}
\end{array}\right) \text {, }
$$

2. Left-shifted Sequence

$$
H_{n}\left(b_{k+1}\right)=H_{n}\left(b_{k}\right) \cdot \operatorname{det}\left(\begin{array}{cccccc}
-s_{0} & 1 & 0 & 0 & \cdots & 0 \\
t_{1} & -s_{1} & 1 & 0 & \cdots & 0 \\
0 & t_{2} & -s_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & t_{n} & -s_{n}
\end{array}\right)
$$

and $H_{n}\left(b_{k+2}\right)=H_{n}\left(b_{k}\right) \cdot D_{n}$ for some expression D_{n}.
2. Left-shifted Sequence

$$
H_{n}\left(b_{k+1}\right)=H_{n}\left(b_{k}\right) \cdot \operatorname{det}\left(\begin{array}{cccccc}
-s_{0} & 1 & 0 & 0 & \cdots & 0 \\
t_{1} & -s_{1} & 1 & 0 & \cdots & 0 \\
0 & t_{2} & -s_{2} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & t_{n} & -s_{n}
\end{array}\right) \text {, }
$$

$$
\text { and } H_{n}\left(b_{k+2}\right)=H_{n}\left(b_{k}\right) \cdot D_{n} \text { for some expression } D_{n} \text {. }
$$

Ex.

$$
B_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k}\left(\frac{x+1}{2}\right), E_{2 k+1}\left(\frac{x+1}{2}\right), E_{2 k+2}\left(\frac{x+1}{2}\right)
$$

3. Some Basic Facts.

3. Some Basic Facts.

$$
>H_{n}\left(c_{k}(x)\right)=H_{n}\left(c_{k}\right) \text {, if } c_{k}(x)=\sum_{\ell=0}^{k}\binom{k}{\ell} c_{\ell} x^{k-\ell: ~}
$$

3. Some Basic Facts.

$$
\begin{gathered}
>H_{n}\left(c_{k}(x)\right)=H_{n}\left(c_{k}\right), \text { if } c_{k}(x)=\sum_{\ell=0}^{k}\binom{k}{\ell} c_{\ell} x^{k-\ell} \text { : e.g., } \\
H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right) .
\end{gathered}
$$

3. Some Basic Facts.

$$
\begin{gathered}
>H_{n}\left(c_{k}(x)\right)=H_{n}\left(c_{k}\right) \text {, if } c_{k}(x)=\sum_{\ell=0}^{k}\binom{k}{\ell} c_{\ell} x^{k-\ell}: \text { e.g., } \\
H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right) .
\end{gathered}
$$

> "checkerboard" determinants

$$
\operatorname{det}\left(\begin{array}{ccccc}
a & 0 & b & 0 & c \\
0 & d & 0 & e & 0 \\
f & 0 & g & 0 & h \\
0 & i & 0 & j & 0 \\
k & 0 & l & 0 & m
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
f & g & h \\
k & l & m
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{cc}
d & e \\
i & j
\end{array}\right)
$$

by J. Cigler and C. Krattenthaler for general determinants.

14/18

Some New Methods

1. Derivatives:

Some New Methods

1. Derivatives:

Lem. Let $c_{k}(x)$ be a sequence of C^{1} functions, and let $P_{n}(y ; x)$ be the corresponding monic orthogonal polynomials. If $c_{k}\left(x_{0}\right)=0$ for some $x_{0} \in \mathbb{C}$ and for all $k \geq 0$, then $P_{n}\left(y ; x_{0}\right)$ are the monic orthogonal polynomials with respect to the sequence of derivatives $c_{k}^{\prime}\left(x_{0}\right)$, as long as $H_{n}\left(c_{k}^{\prime}\left(x_{0}\right)\right)$ are all nonzero.

Some New Methods

1. Derivatives:

Lem. Let $c_{k}(x)$ be a sequence of C^{1} functions, and let $P_{n}(y ; x)$ be the corresponding monic orthogonal polynomials. If $c_{k}\left(x_{0}\right)=0$ for some $x_{0} \in \mathbb{C}$ and for all $k \geq 0$, then $P_{n}\left(y ; x_{0}\right)$ are the monic orthogonal polynomials with respect to the sequence of derivatives $c_{k}^{\prime}\left(x_{0}\right)$, as long as $H_{n}\left(c_{k}^{\prime}\left(x_{0}\right)\right)$ are all nonzero.
Ex. $(2 k+1) E_{2 k}$

Some New Methods

1. Derivatives:

Lem. Let $c_{k}(x)$ be a sequence of C^{1} functions, and let $P_{n}(y ; x)$ be the corresponding monic orthogonal polynomials. If $c_{k}\left(x_{0}\right)=0$ for some $x_{0} \in \mathbb{C}$ and for all $k \geq 0$, then $P_{n}\left(y ; x_{0}\right)$ are the monic orthogonal polynomials with respect to the sequence of derivatives $c_{k}^{\prime}\left(x_{0}\right)$, as long as $H_{n}\left(c_{k}^{\prime}\left(x_{0}\right)\right)$ are all nonzero.
Ex. $(2 k+1) E_{2 k}$

$$
E_{2 k+1}\left(\frac{x+1}{2}\right) \longleftrightarrow P_{n+1}=\left(y+(2 n+1)\left(n+\frac{1}{2}\right)-\frac{x^{2}-1}{4}\right) P_{n}-\frac{n^{2}\left(x^{2}-4 n^{2}\right)}{4} P_{n-1} ;
$$

and recall that

$$
E_{k}^{\prime}(x)=k E_{k-1}(x) \quad \text { and } \quad E_{2 k+1}\left(\frac{1}{2}\right)=0 .
$$

2. Right-shifted:

2. Right-shifted:

Given c_{k}, we define

$$
b_{k}= \begin{cases}a, & k=0 ; \\ c_{k-1}, & k \geq 1 .\end{cases}
$$

2. Right-shifted:

Given c_{k}, we define

$$
b_{k}= \begin{cases}a, & k=0 ; \\ c_{k-1}, & k \geq 1\end{cases}
$$

Namely,

$$
\left(b_{0}, b_{1}, \ldots\right)=\left(a, c_{0}, c_{1}, \ldots\right) .
$$

2. Right-shifted:

Given c_{k}, we define

$$
b_{k}= \begin{cases}a, & k=0 ; \\ c_{k-1}, & k \geq 1\end{cases}
$$

Namely,

$$
\left(b_{0}, b_{1}, \ldots\right)=\left(a, c_{0}, c_{1}, \ldots\right) .
$$

Ex.

$$
H_{n}\left(B_{2 k}\right)=(-1)^{n} \frac{(4 n+3)!}{(n+1) \cdot(2 n+1)!^{3}} H_{n}\left(B_{2 k+2}\right) \mathcal{H}_{2 n+1},
$$

for the harmonic numbers

$$
\mathcal{H}_{n}=1+\frac{1}{2}+\cdots \frac{1}{n}
$$

Right-shifted

Lem. Let s_{n} and t_{n} be the sequences appearing in the 3-term recurrence of the monic orthogonal polynomial sequences for c_{k}. Then,

$$
\frac{H_{n+1}\left(b_{k}\right)}{H_{n}\left(c_{k}\right)}=-s_{n} \frac{H_{n}\left(b_{k}\right)}{H_{n-1}\left(c_{k}\right)}-t_{n} \frac{H_{n-1}\left(b_{k}\right)}{H_{n-2}\left(c_{k}\right)} .
$$

Right-shifted

Lem. Let s_{n} and t_{n} be the sequences appearing in the 3 -term recurrence of the monic orthogonal polynomial sequences for c_{k}. Then,

$$
\frac{H_{n+1}\left(b_{k}\right)}{H_{n}\left(c_{k}\right)}=-s_{n} \frac{H_{n}\left(b_{k}\right)}{H_{n-1}\left(c_{k}\right)}-t_{n} \frac{H_{n-1}\left(b_{k}\right)}{H_{n-2}\left(c_{k}\right)} .
$$

	B_{k-1}	$B_{2 k}$	$(2 k+1) B_{2 k}$	$\left(2^{2 k}-1\right) B_{2 k}$		
	0	1	1	0		
	$E_{2 k-2}$	$E_{k-1}(1)$	$E_{k+3}(1)$	$E_{2 k-1}(1)$	$E_{2 k+5}(1)$	$\frac{E_{k}(1)}{k!}$
	0	0	$-\frac{1}{4}$	0	$\frac{1}{2}$	1
	$\frac{E_{2 k-1}(1)}{(2 k-1)!}$	$E_{2 k-2}\left(\frac{x+1}{2}\right)$	$(2 k+1) E_{2 k}$			
	0	0	0			

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k}; and Computational Sciences

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$
3. The left-shifted sequences $H_{n}\left(B_{k+1}\right)$ and $H_{n}\left(B_{k+2}\right)$ are known.

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$
3. The left-shifted sequences $H_{n}\left(B_{k+1}\right)$ and $H_{n}\left(B_{k+2}\right)$ are known.
4. The fact that B_{k+1} and B_{k+2} are of "checkerboard" type, can give results of $H_{n}\left(B_{2 k+2}\right)$, but not for $H_{n}\left(B_{2 k}(x)\right)$.

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$
3. The left-shifted sequences $H_{n}\left(B_{k+1}\right)$ and $H_{n}\left(B_{k+2}\right)$ are known.
4. The fact that B_{k+1} and B_{k+2} are of "checkerboard" type, can give results of $H_{n}\left(B_{2 k+2}\right)$, but not for $H_{n}\left(B_{2 k}(x)\right)$.
5. $H_{n}\left(B_{2 k+2}\right) \Rightarrow H_{n}\left(B_{2 k}\right)$ via right-shifted.

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$
3. The left-shifted sequences $H_{n}\left(B_{k+1}\right)$ and $H_{n}\left(B_{k+2}\right)$ are known.
4. The fact that B_{k+1} and B_{k+2} are of "checkerboard" type, can give results of $H_{n}\left(B_{2 k+2}\right)$, but not for $H_{n}\left(B_{2 k}(x)\right)$.
5. $H_{n}\left(B_{2 k+2}\right) \Rightarrow H_{n}\left(B_{2 k}\right)$ via right-shifted.
6. To compute $H_{n}\left(B_{2 k}\left(\frac{1}{2}\right)\right)$, one needs the result of $H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$.

Further Remark

Let us take Bernoulli numbers B_{k} and Bernoulli polynomials $B_{k}(x)$ as an example.

1. We know the orthogonal polynomials w. r. t. B_{k};
2. $H_{n}\left(B_{k}(x)\right)=H_{n}\left(B_{k}\right)$
3. The left-shifted sequences $H_{n}\left(B_{k+1}\right)$ and $H_{n}\left(B_{k+2}\right)$ are known.
4. The fact that B_{k+1} and B_{k+2} are of "checkerboard" type, can give results of $H_{n}\left(B_{2 k+2}\right)$, but not for $H_{n}\left(B_{2 k}(x)\right)$.
5. $H_{n}\left(B_{2 k+2}\right) \Rightarrow H_{n}\left(B_{2 k}\right)$ via right-shifted.
6. To compute $H_{n}\left(B_{2 k}\left(\frac{1}{2}\right)\right)$, one needs the result of $H_{n}\left(B_{2 k+1}\left(\frac{x+1}{2}\right)\right)$.

We still do not know how to compute the Hankel determinants of some arbitrary sequence.

The End

