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Bernoulli Polynomials

Definition
The Bernoulli polynomials are defined by the exponential generating
functions -
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and the Bernoulli numbers are B, = B,(0).

Theorem
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First Result
Theorem (K. Dilcher and LJ, 2020)
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Theorem
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If Pp’s three-term recurrence is given by
Pnt1(y) = (¥ + sn)Pn(y) — tnPa—1(y),
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Left-shifts

Theorem
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Theorem
Given a sequence cx and the corresponding orthogonal monic
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Results (K. Dilcher and LJ, 2020)
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Let ck(x) be a sequence of C* functions, and let P,(y; x) be the
corresponding monic orthogonal polynomials. If ci(xo) = 0 for some
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(2k + 1) Ex

x+1 1 x2 -1 n?(x? — 4n?)
[y — > Pay1 = (y+(2n+1) n+§ - Pn— ———Pn_1;

and recall that

1
E/’((X) = kEk,]_(X) and E2k+1 <> = 0.
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Given ¢, we define

Namely,

Hy(Bok) = (—1)" T (lz;n z;:)i NE Hn(Bak+2)Hant1,

for the harmonic numbers

1 1
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Right-shifted

Lemma (K. Dilcher and LJ, 2020)

Let s, and t, be the sequences appearing in the 3-term recurrence of the
monic orthogonal polynomial sequences for c. Then,
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Lemma (K. Dilcher and LJ, 2020)

Let s, and t, be the sequences appearing in the 3-term recurrence of the
monic orthogonal polynomial sequences for c. Then,

Hn+1(bk) _ Hn(bk) ¢ anl(bk)
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B
b, k>1 | Ey_» Ex—1(1) Exi3(1) | Eax—1(1) | Exxys(1) 'Z(| )
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By . (1
b, k>1 é’f_ll()[) Exp o (le) (2k + 1) Eak
bo 0] 0] 0]
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Theorem (LJ and Y. Li, 2021)

V, is invertible iff n < r.
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It is known that (V,__11)1,1 =2 ((;‘i)/(z,')z - 1)'



Results
Proposition (LJ and Y. Li, 2021)
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() - () )
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Proposition (LJ and Y. Li, 2021)
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Theorem (Christian Krattenthaler)
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2k +5 ([GERIUCTER]
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(2i*

n—1
1
| | ¢ [1 = =4
(4i)1(4i + 1)! (r = Oaea s <'+ 2 >2H1
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Stirling Numbers

Corollary (LJ and Y. Li, 2021)

Let s(n, k) and S(n, k) be the Stirling numbers of the first and second
kinds, respective.
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Corollary (LJ and Y. Li, 2021)

Let s(n, k) and S(n, k) be the Stirling numbers of the first and second
kinds, respective. For any r € N and j =0,1,2...,r, we have

2j+2k .
1 2j+2k+1 it okt l—m
zwm(z( 2 )<<r+1>,++ y
(0]
m @EI

Z

Z 1)rHitis +1,i)s(r+1,2k+2—i)>—

=0
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