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“The original question raised was to determine how many times catalysts
are expected to be added in order to get a single lump of all molecules.”
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. Cards are shuffled by a permutation 7 € S,,.

. Cards with consecutive numbers in increasing order are merged.
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. We stop until only one card is left. “Shuffle to One".

AN

Problem

Let X, be the random number of steps it takes to shuffle n cards.

E[X,] =?

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)

For any n > 2,

E[X,
n<E[X,) <n++vn= lim M:
n—oo N
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E[X,], Var[X,], Central Limit Theorem

Remark

Experiments shows E[X,,] — n ~ log n.
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[n] = [k] with probability p,
Namely,

Xp =1+ X, with probability py « = E[Xa] = > (1 + E[Xk]) pn.«-
k=1

Let u, = E[X,]:
» There is a recurrence involving , and pp .
» The recurrence it linear but not holonomic.
» The conditional expectation recurrence

n Zn—l Pr K ok
_ _ k=1 Fn,
HUn = 1+ZPn,kﬂk = Mn = 1_7,)”7”

k=1

works for general card shuffling models.
1. “general” refers to other models that reduce the number of cards in a
different way.
2. And if given the sequence p, «, to find the asymptotic expression of
1n can be considered independent of the shuffling model.
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=2 Var(Xo) =2

For n = 3:
{1,2,3}, ,{1,3,2},{2,1,3},{3,2,1}
L 1+ (1+ )+1 (1+pu3) = Lo

R = —- . i =0 L 13 = = =

M3 6 M2 5 U3 U3 1_% 3



- ( X )X: =2 Var(Xp) =2

For n = 3:
{1,2,3}, {1,3,2},{2,1,3},{3,2,1}
1 1 1+%2 10 38
M3 = 6'14' '(1+/t2)+§'(1+/t3) = H3 =10 I =3 Var(Xs) = 9
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A(0) = A(1) =1,

n—1
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A(n) = nA(n—1) + (n—1)A(n—2)
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1
Ank)= ("7 T)A(k—1) A000255

A0)=A(1)=1, A(n)=nA(n—1)+ (n—1)A(n

11;
44,  53;
110, 265,  309;
220, 795, 1854, 2119;
385, 1855, 6489, 14833, 16687;
616, 3710, 17304, 59332, 133496, 148329;
108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;

132, 213, 231, 312, 321 have respectively

For n=3, the permutations 123,
2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is

. A. Sloane, Apr 12 2014

In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and

4.12 blocks are separate dots Eneric Deutsch, May 16 2010

3,2,1

~2)
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pn = E[X]
Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let €, := pup — n — H,_1, where the harmonic number is defined by
1 1
Hp=1+Z+--+—.
2 n

] hen,
En — E —
n n+1 2

1. €, has a limit
2.

"L A(n, k
o =1+ (| )Mk (11 :=0)
k=1

n!

3. Abel summation by parts:

Lemma (U(n) := > \_; uk)

N N

> tpVe = U(N)vivs1 + Y U(n) (Vo = Vay1)

n=1 n=1
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Var[X,]
Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any n > 2,

E(X2) = <1+2Z .E(X)+ZA(nk) xk)>/(1_A(:E”)>

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Var[X,] = E[(X, — pn)?] ~ n.
1. The ultimate goal is to show

Xo—n w
NG — Z ~N(0,1).

(1 N A(Z; n)) Var [X,] = i WVN X +1+0(nh)

k=1
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Z ~ N(0,1)
Problem
What are the (central) moments of Z7

E[Z™] = L / ZMe~% dz = 0 m odd;
V271 Jr (m—1!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m > 2, as n — oo,

(2M — 1)11nM + O(nM~1 log n), m = 2M;

EM@2M + 1)1nM + O(nM~Llogn) m=2M + 1.

IWM—MW={

Corollary (S. Chern, L. Jiu, and I. Simonelli)

X —
Z, :zn—'u":>E[Z,;”]:

V/Var[X;]

E[X — )] _ [0, m odd:
Var[X,]m/2 (m—1)!1 m even.
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End: Any Questions?




