Shuffle to One, Shuffle to Normal

Lin Jiu

Zu Chongzhi Center for Mathematics and Computational Sciences Duke Kunshan University

© Number Theory Seminar, Department of Mathematics and Statistics, Dalhousie University

Jan. 31st, 2024

Dr. Shane Chern

Dr. Italo Simonelli

Dr. Shane Chern

Dr. Italo Simonelli

Dr. Shane Chern

Dr. Italo Simonelli

Duanduan Wang

Communications in Statistics - Theory and Methods

Taylor & Francis

ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: http://www.tandfonline.com/loi/lsta20

A discrete probability problem in card shuffling

M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang & Fu-Chih Cheng

To cite this article: M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang & Fu-Chih Cheng (2016) A discrete probability problem in card shuffling, Communications in Statistics - Theory and Methods, 45:3, 612-620, DOI: 10.1080/03610926.2013.834451

To link to this article: http://dx.doi.org/10.1080/03610926.2013.834451

Accepted author version posted online: 04 Mar 2015.

M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang & Fu-Chih Cheng

To cite this article: M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang & Fu-Chih Cheng (2016) A discrete probability problem in card shuffling, Communications in Statistics - Theory and Methods, 45:3, 612-620, DOI: <u>10.1080/03610926.2013.834451</u>

To link to this article: http://dx.doi.org/10.1080/03610926.2013.834451

Accepted author version posted online: 04 Mar 2015.

"The original question raised was to determine how many times catalysts are expected to be added in order to get a single lump of all molecules."

Model

Model

Given n labeled card: $[n] := \{1, 2, \dots, n\}.$

1. Cards are shuffled by a permutation $\tau \in S_n$.

Model

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.

Model

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered

Model

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered
- 4. We stop until only one card is left.

Model

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered
- 4. We stop until only one card is left. "Shuffle to One".

Model

Given *n* labeled card: $[n] := \{1, 2, \dots, n\}$.

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered
- 4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_n be the random number of steps it takes to shuffle n cards.

 $\mathbb{E}[X_n] = ?$

Model

Given *n* labeled card: $[n] := \{1, 2, \dots, n\}$.

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered
- 4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_n be the random number of steps it takes to shuffle n cards.

 $\mathbb{E}[X_n] = ?$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)

For any $n \geq 2$,

 $n \leq \mathbb{E}[X_n] \leq n + \sqrt{n}$

Model

Given *n* labeled card: $[n] := \{1, 2, \dots, n\}$.

- 1. Cards are shuffled by a permutation $\tau \in S_n$.
- 2. Cards with consecutive numbers in increasing order are merged.
- 3. Cards are renumbered
- 4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_n be the random number of steps it takes to shuffle n cards.

 $\mathbb{E}[X_n] = ?$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)

For any $n \geq 2$,

$$n \leq \mathbb{E}[X_n] \leq n + \sqrt{n} \Rightarrow \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{n} = 1.$$

<ロ> <問> < 同> < 回> < 回> < 回> < 回</p>

 $\mathbb{E}[X_n],$

 $\mathbb{E}[X_n], \quad Var[X_n],$

 $\mathbb{E}[X_n]$, $Var[X_n]$, Central Limit Theorem

 $\mathbb{E}[X_n]$, $Var[X_n]$, Central Limit Theorem

Remark

Experiments shows $\mathbb{E}[X_n] - n \sim \log n$.

《曰》《問》《言》《言》 []

[*n*]

$[n] \xrightarrow{\tau} [k]$

・ロット 御 マ キョット キョット ほう うろんの

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k}$

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

$$X_n = 1 + X_k$$
 with probability $ho_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n (1 + \mathbb{E}[X_k])
ho_{n,k}.$

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = \overline{1 + X_k}$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}.$

Let $\mu_n = \mathbb{E}[X_n]$:

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $ho_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n \left(1 + \mathbb{E}[X_k]\right)
ho_{n,k}.$

Let $\mu_n = \mathbb{E}[X_n]$: There is a recurrence involving μ_n and $p_{n,k}$.

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}.$

Let $\mu_n = \mathbb{E}[X_n]$:

There is a recurrence involving μ_n and $p_{n,k}$.

The recurrence it linear

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}.$

Let μ_n = ℝ[X_n]:
There is a recurrence involving μ_n and p_{n,k}.
The recurrence it linear but not holonomic.

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \overline{\mathbb{E}[X_n]} = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}.$

Let µ_n = E[X_n]:
▶ There is a recurrence involving µ_n and p_{n,k}.
▶ The recurrence it linear but not <u>holonomic</u>.
▶ The conditional expectation recurrence

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k$$

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + \overline{X_k}$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}$.

Let μ_n = ℝ[X_n]:
There is a recurrence involving μ_n and p_{n,k}.
The recurrence it linear but not holonomic.
The conditional expectation recurrence

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k \Rightarrow \mu_n = \frac{\sum_{k=1}^{n-1} p_{n,k} \mu_k}{1 - p_{n,n}}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで、

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \overline{\mathbb{E}[X_n]} = \sum_{k=1}^n (1 + \mathbb{E}[X_k]) p_{n,k}.$

Let $\mu_n = \mathbb{E}[X_n]$:

- There is a recurrence involving μ_n and $p_{n,k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k \Rightarrow \mu_n = \frac{\sum_{k=1}^{n-1} p_{n,k} \mu_k}{1 - p_{n,n}}$$

works for general card shuffling models.

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n \overline{(1 + \mathbb{E}[X_k]) p_{n,k}}.$

Let $\mu_n = \mathbb{E}[X_n]$:

- There is a recurrence involving μ_n and $p_{n,k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k \Rightarrow \mu_n = \frac{\sum_{k=1}^{n-1} p_{n,k} \mu_k}{1 - p_{n,n}}$$

works for general card shuffling models.

1. "general" refers to other models that reduce the number of cards in a different way.
Conditional Expectation

 $[n] \xrightarrow{\tau} [k]$ with probability $p_{n,k}$

Namely,

 $X_n = 1 + X_k$ with probability $p_{n,k} \Rightarrow \mathbb{E}[X_n] = \sum_{k=1}^n \left(1 + \mathbb{E}[X_k]\right) p_{n,k}.$

Let $\mu_n = \mathbb{E}[X_n]$:

- > There is a recurrence involving μ_n and $p_{n,k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k \Rightarrow \mu_n = \frac{\sum_{k=1}^{n-1} p_{n,k} \mu_k}{1 - p_{n,n}}$$

works for general card shuffling models.

- "general" refers to other models that reduce the number of cards in a different way.
- 2 And if given the sequence $p_{n,k}$, to find the asymptotic expression of μ_n can be considered independent of the shuffling model.

n=2 and n=3

1. For n = 2:

×ロ> < 回> < 三> < 三> < 三</p>

1. For n = 2:

$\mu_2 =$

- 《ロ》 《聞》 《言》 《言》 … 言 … ののの

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1$

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2$

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n$

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots$

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2$

1. For
$$n = 2$$
:
 $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$

1. For n = 2: $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$ $\underbrace{t_{0 \to b}}_{0 \to b}$

2. For *n* = 3:

2. For *n* = 3:

 $\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}$

・ロン (四) (日) (日) (日) (日) (日) (日) (日)

1. For n = 2: $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$ $t_{0 \to b}$

2. For *n* = 3:

 $\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}$

$$\mu_3 = \frac{1}{6} \cdot 1$$

(ロ > 4回 > 4回 > 4回 > 「回」 わえで

1. For n = 2: $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$

2. For *n* = 3:

$$\mu_3 = rac{1}{6} \cdot 1 + rac{1}{3} \cdot (1 + \mu_2)$$

1. For n = 2: $\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$ $t_{0 \to b}$

2. For *n* = 3:

$$\mu_3 = \frac{1}{6} \cdot 1 + \frac{1}{3} \cdot (1 + \mu_2) + \frac{1}{2} \cdot (1 + \mu_3)$$

1. For
$$n = 2$$
:

$$\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$$

$$t_{0 \to b}$$

2. For *n* = 3:

$$\mu_3 = \frac{1}{6} \cdot 1 + \frac{1}{3} \cdot (1 + \mu_2) + \frac{1}{2} \cdot (1 + \mu_3) \Rightarrow \mu_3 = \frac{1 + \frac{2}{3}}{1 - \frac{1}{2}} = \frac{10}{3}$$

L. For
$$n = 2$$
:

$$\mu_2 = \frac{1}{2} \cdot 1 + \left(\frac{1}{2}\right)^2 \cdot 2 + \dots + \left(\frac{1}{2}\right)^n n + \dots = \left(\frac{x}{(1-x)^2}\right)_{x=\frac{1}{2}} = 2 \quad \text{Var}(X_2) = 2$$

2. For *n* = 3:

$$\mu_3 = \frac{1}{6} \cdot 1 + \frac{1}{3} \cdot (1 + \mu_2) + \frac{1}{2} \cdot (1 + \mu_3) \Rightarrow \mu_3 = \frac{1 + \frac{2}{3}}{1 - \frac{1}{2}} = \frac{10}{3} \quad \text{Var}(X_3) = \frac{38}{9}.$$

Definition

A permutation of n integers 1, 2, ..., n is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

Definition

A permutation of n integers 1, 2, ..., n is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps 7654321 seven lumps

Definition

A permutation of n integers 1, 2, ..., n is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps 7654321 seven lumps

Theorem

The number of lumps of permutations of [n] is

$$A(n,k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}.$$

Definition

A permutation of n integers 1, 2, ..., n is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps 7654321 seven lumps

Theorem

The number of lumps of permutations of [n] is

$$A(n,k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}.$$

 $A(n,k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$

・ロッ ・ 「 ・ ミ ・ ・ 『 ・ ・ 「 ・ く つ >

$$A(n,k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$$

 $A(n,k) = \binom{n-1}{k-1}A(k-1)$

$$A(n,k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$$

 $A(n,k) = {n-1 \choose k-1} A(k-1)$ A000255

$$A(n, k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$$
.
.

$$A(n, k) = \binom{n-1}{k-1} A(k-1) \quad A000255$$

$$A(0) = A(1) = 1, \quad A(n) = nA(n-1) + (n-1)A(n-2)$$

$$A(n, k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$$
.
.

$$A(n, k) = \binom{n-1}{k-1} A(k-1) \quad A000255$$

$$A(0) = A(1) = 1, \quad A(n) = nA(n-1) + (n-1)A(n-2)$$

$$\sum_{k=0}^{\infty} A(k) \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}.$$

$$A(n, k) = \binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^j}{j!}$$
.
.

$$A(n, k) = \binom{n-1}{k-1} A(k-1) \quad A000255$$

$$A(0) = A(1) = 1, \quad A(n) = nA(n-1) + (n-1)A(n-2)$$

$$\sum_{k=0}^{\infty} A(k) \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}.$$

2. A(n, k): A010027.

EXAMPLE	Triangle	starts:							
	1;								
	1, 1;								
	1, 2,	3;							
	1, 3,	9, 11;							
	1, 4,	18, 44,	53;						
	1, 5,	30, 110,	265,	309;					
	1, 6,	45, 220,	795,	1854,	2119;				
	1, 7,	63, 385,	1855,	6489,	14833,	16687;			
	1, 8,	84, 616,	3710,	17304,	59332,	133496,	148329;		
	1, 9,	108, 924,	6678,	38934,	177996,	600732,	1334961,	1468457;	
	For n=3,	the permu	itatio	ns 123,	132, 213	3, 231,	312, 321 1	have respecti	vely
	2,0,0,	1,1,0 cons	secutiv	/e ascer	iding pai	irs, so	row 3 of t	the triangle	is
	3,2,1.	- N. J. J	A. Slo	ane, Api	12 2014	4			
	In the a	lternative	e defin	nition,	T(4,2) = 3	3 becaus	e we have	234.1, 4.123	, and
	34.12	(the block	ks are	separat	ed by do	ots)	Emeric De	utsch, May 16	2010

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Then,

$$0<\varepsilon_n-\varepsilon_{n+1}<\frac{1}{n^2}.$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Then,

$$0<\varepsilon_n-\varepsilon_{n+1}<\frac{1}{n^2}.$$

1. ε_n has a limit

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Then,

$$0<\varepsilon_n-\varepsilon_{n+1}<\frac{1}{n^2}.$$

1. ε_n has a limit 2.

$$\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Then,

$$0<\varepsilon_n-\varepsilon_{n+1}<\frac{1}{n^2}.$$

1. ε_n has a limit 2.

$$\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k \quad (\mu_1 := 0)$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$, where the harmonic number is defined by $\mathcal{H}_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Then,

$$0<\varepsilon_n-\varepsilon_{n+1}<\frac{1}{n^2}.$$

1. ε_n has a limit 2.

$$\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k \quad (\mu_1 := 0)$$

3. Abel summation by parts:

Lemma $(U(n) := \sum_{k=1}^{n} u_k)$

$$\sum_{n=1}^{N} u_n v_n = U(N) v_{N+1} + \sum_{n=1}^{N} U(n) (v_n - v_{n+1})$$

- ・ロシ ・ 理 ・ ・ ヨ ・ ・ ヨ ・ の へ ()・

$Var[X_n]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)

For any $n \geq 2$,

$$E(X_{n}^{2}) = \left(1 + 2\sum_{k=2}^{n} \frac{A(n,k)}{n!} E(X_{k}) + \sum_{k=2}^{n-1} \frac{A(n,k)}{n!} E(X_{k}^{2})\right) / \left(1 - \frac{A(n,n)}{n!}\right)$$
$Var[X_n]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng) For any n > 2,

$$E\left(X_{n}^{2}\right) = \left(1 + 2\sum_{k=2}^{n} \frac{A(n,k)}{n!} E\left(X_{k}\right) + \sum_{k=2}^{n-1} \frac{A(n,k)}{n!} E\left(X_{k}^{2}\right)\right) / \left(1 - \frac{A(n,n)}{n!}\right)$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

 $\operatorname{Var}[X_n] = \mathbb{E}[(X_n - \mu_n)^2] \sim n.$

$Var[X_n]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng) For any n > 2,

$$E(X_{n}^{2}) = \left(1 + 2\sum_{k=2}^{n} \frac{A(n,k)}{n!} E(X_{k}) + \sum_{k=2}^{n-1} \frac{A(n,k)}{n!} E(X_{k}^{2})\right) / \left(1 - \frac{A(n,n)}{n!}\right)$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

 $\operatorname{Var}[X_n] = \mathbb{E}[(X_n - \mu_n)^2] \sim n.$

1. The ultimate goal is to show

$$\frac{X_n-n}{\sqrt{n}} \stackrel{w}{\rightarrow} Z \sim \mathcal{N}(0,1).$$

$$\left(1-\frac{A(n,n)}{n!}\right)\operatorname{Var}\left[X_{n}\right]=\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\operatorname{Var}\left[X_{k}\right]+1+O\left(n^{-1}\right)$$

Let $\{\lambda_n\} \subset \mathbb{C}$ with $\lambda_n \sim Mn^L$ as $n \to \infty$ for fixed $L \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_n by the recurrence

$$\left(1-\frac{A(n,n)}{n!}\right)\xi_n=\lambda_n+\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\xi_k,$$

for $n > n_0 \ge 2$ with initial values ξ_1, \ldots, ξ_{n_0} . Then, as $n \to \infty$,

$$\xi_n \sim \frac{M}{L+1} n^{L+1}$$

Let $\{\lambda_n\} \subset \mathbb{C}$ with $\lambda_n \sim Mn^L$ as $n \to \infty$ for fixed $L \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_n by the recurrence

$$\left(1-\frac{A(n,n)}{n!}\right)\xi_n=\lambda_n+\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\xi_k,$$

for $n > n_0 \ge 2$ with initial values ξ_1, \ldots, ξ_{n_0} . Then, as $n \to \infty$,

$$\xi_n \sim \frac{M}{L+1} n^{L+1}$$

$$\eta_n := \xi_n - \frac{M}{L+1} n^{L+1}$$

・ロト ・ 国 ト ・ 国 ト ・ 国 - つへで

Let $\{\lambda_n\} \subset \mathbb{C}$ with $\lambda_n \sim Mn^L$ as $n \to \infty$ for fixed $L \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_n by the recurrence

$$\left(1-\frac{A(n,n)}{n!}\right)\xi_n=\lambda_n+\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\xi_k,$$

for $n > n_0 \ge 2$ with initial values ξ_1, \ldots, ξ_{n_0} . Then, as $n \to \infty$,

$$\xi_n \sim \frac{M}{L+1} n^{L+1}$$

$$\eta_n := \xi_n - \frac{M}{L+1} n^{L+1} \Rightarrow |\eta_n| < C \sum_{j=1}^n \left(\delta_j + j^{L-1} \right),$$
for some positive constant $C(L, M)$ and $\delta_n := \lambda_n - M n^L$

< ロ > < 固 > < 豆 > < 豆 > < 豆 > < 豆 > < - つ へ ()・

Let $\{\lambda_n\} \subset \mathbb{C}$ with $\lambda_n \sim Mn^L$ as $n \to \infty$ for fixed $L \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_n by the recurrence

$$\left(1-\frac{A(n,n)}{n!}\right)\xi_n=\lambda_n+\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\xi_k,$$

for $n > n_0 \ge 2$ with initial values ξ_1, \ldots, ξ_{n_0} . Then, as $n \to \infty$,

$$\xi_n \sim \frac{M}{L+1} n^{L+1}$$

$$\eta_n := \xi_n - \frac{M}{L+1} n^{L+1} \Rightarrow |\eta_n| < C \sum_{j=1}^n \left(\delta_j + j^{L-1} \right),$$

for some positive constant C(L, M) and $\delta_n := \lambda_n - Mn^L$.

Recall

$$\left(1 - \frac{A(n,n)}{n!}\right) \operatorname{Var}\left[X_n\right] = \sum_{n=1}^{n-1} \frac{A(n,k)}{n!} \operatorname{Var}\left[X_k\right] + 1 + O\left(n^{-1}\right)$$

Let $\{\lambda_n\} \subset \mathbb{C}$ with $\lambda_n \sim Mn^L$ as $n \to \infty$ for fixed $L \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_n by the recurrence

$$\left(1-\frac{A(n,n)}{n!}\right)\xi_n=\lambda_n+\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}\xi_k,$$

for $n > n_0 \ge 2$ with initial values ξ_1, \ldots, ξ_{n_0} . Then, as $n \to \infty$,

$$\xi_n \sim \frac{M}{L+1} n^{L+1}$$

$$\eta_n := \xi_n - \frac{M}{L+1} n^{L+1} \Rightarrow |\eta_n| < C \sum_{j=1}^n \left(\delta_j + j^{L-1} \right),$$

for some positive constant C(L, M) and $\delta_n := \lambda_n - Mn^L$.

Recall

$$\left(1 - \frac{A(n,n)}{n!}\right) \operatorname{Var}\left[X_n\right] = \sum_{n=1}^{n-1} \frac{A(n,k)}{n!} \operatorname{Var}\left[X_k\right] + 1 + O\left(n^{-1}\right)$$

Problem

What are the (central) moments of Z?

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz$$

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz = \begin{cases} 0, & m \text{ odd};\\ (m-1)!!, & m \text{ even.} \end{cases}$$

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz = \begin{cases} 0, & m \text{ odd}; \\ (m-1)!!, & m \text{ even.} \end{cases}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every $m \ge 2$, as $n \to \infty$,

$$\mathbb{E}\left[(X_n - \mu_n)^m\right] = \begin{cases} (2M - 1)!!n^M + O(n^{M-1}\log n), & m = 2M; \\ \frac{2}{3}M(2M + 1)!!n^M + O(n^{M-1}\log n) & m = 2M + 1. \end{cases}$$

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz = \begin{cases} 0, & m \text{ odd};\\ (m-1)!!, & m \text{ even.} \end{cases}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every $m \ge 2$, as $n \to \infty$,

$$\mathbb{E}\left[(X_n - \mu_n)^m\right] = \begin{cases} (2M - 1)!!n^M + O(n^{M-1}\log n), & m = 2M; \\ \frac{2}{3}M(2M + 1)!!n^M + O(n^{M-1}\log n) & m = 2M + 1. \end{cases}$$

$$Z_n := \frac{X_n - \mu_n}{\sqrt{\mathsf{Var}[X_n]}}$$

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz = \begin{cases} 0, & m \text{ odd};\\ (m-1)!!, & m \text{ even.} \end{cases}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every $m \ge 2$, as $n \to \infty$,

$$\mathbb{E}\left[(X_n - \mu_n)^m\right] = \begin{cases} (2M - 1)!!n^M + O(n^{M-1}\log n), & m = 2M; \\ \frac{2}{3}M(2M + 1)!!n^M + O(n^{M-1}\log n) & m = 2M + 1. \end{cases}$$

$$Z_n := \frac{X_n - \mu_n}{\sqrt{\operatorname{Var}[X_n]}} \Rightarrow \mathsf{E}[Z_n^m] = \frac{\mathbb{E}\left[(X_n - \mu_n)^m\right]}{\operatorname{Var}[X_n]^{m/2}}$$

Problem

What are the (central) moments of Z?

$$\mathbb{E}[Z^m] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} z^m e^{-\frac{z^2}{2}} dz = \begin{cases} 0, & m \text{ odd};\\ (m-1)!!, & m \text{ even.} \end{cases}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every $m \ge 2$, as $n \to \infty$,

$$\mathbb{E}\left[(X_n - \mu_n)^m\right] = \begin{cases} (2M - 1)!!n^M + O(n^{M-1}\log n), & m = 2M; \\ \frac{2}{3}M(2M + 1)!!n^M + O(n^{M-1}\log n) & m = 2M + 1. \end{cases}$$

$$Z_n := \frac{X_n - \mu_n}{\sqrt{\operatorname{Var}[X_n]}} \Rightarrow \mathsf{E}[Z_n^m] = \frac{\mathbb{E}\left[(X_n - \mu_n)^m\right]}{\operatorname{Var}[X_n]^{m/2}} \rightarrow \begin{cases} 0, & m \text{ odd;} \\ (m-1)!!, & m \text{ even.} \end{cases}$$

$$rac{X_n-n}{\sqrt{n}} \stackrel{w}{
ightarrow} Z \sim \mathcal{N}(0,1).$$

$$\frac{X_n-n}{\sqrt{n}} \stackrel{w}{\to} Z \sim \mathcal{N}(0,1).$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.

$$\frac{X_n-n}{\sqrt{n}} \stackrel{w}{\to} Z \sim \mathcal{N}(0,1).$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.

From $X_n = 1 + X_k$ with probability $p_{n,k}$

$$\frac{X_n-n}{\sqrt{n}} \stackrel{w}{\rightarrow} Z \sim \mathcal{N}(0,1).$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.

From $X_n = 1 + X_k$ with probability $p_{n,k}$, for any polynomial p(x): $E[p(X_n)] = \sum_{k=1}^{n} P(Y_n = k) E[p(1 + X_k)] = \sum_{k=1}^{n} \frac{A(n,k)}{n!} \cdot E[p(1 + X_k)]$

$$\frac{X_n-n}{\sqrt{n}} \stackrel{w}{\rightarrow} Z \sim \mathcal{N}(0,1).$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.

From $X_n = 1 + X_k$ with probability $p_{n,k}$, for any polynomial p(x): $E[p(X_n)] = \sum_{k=1}^{n} P(Y_n = k) E[p(1 + X_k)] = \sum_{k=1}^{n} \frac{A(n,k)}{n!} \cdot E[p(1 + X_k)]$

$$\left(1 - \frac{A(n,n)}{n!}\right) \mathsf{E}\left[\left(X_n - \mu_n\right)^{2M}\right] = \sum_{k=1}^{n-1} \frac{A(n,k)}{n!} \mathsf{E}\left[\left(X_k - \mu_k\right)^{2M}\right] + * \\ \left(1 - \frac{A(n,n)}{n!}\right) \mathsf{E}\left[\left(X_n - \mu_n\right)^{2M+1}\right] = \sum_{k=1}^{n-1} \frac{A(n,k)}{n!} \mathsf{E}\left[\left(X_k - \mu_k\right)^{2M+1}\right] + **$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{A(n,k)}{n!} z^k \right) n x^n = \frac{x z e^{x(1-z)}}{(1-xz)^2}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} \right) n x^{n} = \frac{x z e^{x(1-z)}}{(1-xz)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} = \sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m} (1-z)^{m}$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} \right) n x^{n} = \frac{x z e^{x(1-z)}}{(1-xz)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} = \sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m} (1-z)^{m}$$

Lemma (S. Chern, L. Jiu, and I. Simonelli)

For
$$n \ge 1$$
, $\sum_{t=1}^{n} S_n(t) z^t = z^n + \sum_{m=1}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m} (1-z)^{m-1}$,
where $S_n(t) := \sum_{k=1}^{t} \frac{A(n,k)}{n!}$.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} \right) n x^{n} = \frac{x z e^{x(1-z)}}{(1-xz)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n,k)}{n!} z^{k} = \sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m} (1-z)^{m}$$

Lemma (S. Chern, L. Jiu, and I. Simonelli)

For
$$n \ge 1$$
, $\sum_{t=1}^{n} S_n(t) z^t = z^n + \sum_{m=1}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m} (1-z)^{m-1}$,
where $S_n(t) := \sum_{k=1}^{t} \frac{A(n,k)}{n!}$.

$$\sum_{t=1}^{n} S_{n}(t) \cdot \frac{1}{t^{2}} = \frac{1}{n^{2}} + \sum_{m=1}^{n-1} \frac{(n-m-1)!}{n \cdot n!} + \sum_{m=1}^{n-1} \frac{(n-m)!}{m \cdot n!} \left(\mathcal{H}_{n} - \mathcal{H}_{n-m}\right)$$

Definition

The Bell numbers B_ℓ are given by the exponential generating function

$$\sum_{\ell=0}^{\infty} B_\ell \frac{x^\ell}{\ell!} := e^{e^x - 1}.$$

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$\sum_{\ell=0}^{\infty} B_{\ell} \frac{x^{\ell}}{\ell!} := e^{e^x - 1}.$$

Theorem

$$B_{\ell} = \sum_{m=0}^{\ell} \left\{ \begin{array}{c} \ell \\ m \end{array} \right\},$$

where $\left\{ \begin{array}{c} \ell \\ m \end{array} \right\}$ is the Stirling numbers of the second kind.

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$\sum_{\ell=0}^{\infty} B_\ell \frac{x^\ell}{\ell!} := e^{e^x - 1}.$$

Theorem

$$B_\ell = \sum_{m=0}^\ell \left\{ egin{array}{c} \ell \ m \end{array}
ight\},$$

where $\left\{ \begin{array}{c} \ell \\ m \end{array} \right\}$ is the Stirling numbers of the second kind.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\ell \in \mathbb{N} \cup \{0\}$, then for $n > \ell$,

$$\sum_{k=1}^{n} \frac{A(n,k)}{n!} (n-k)^{\ell} = B_{\ell} - (B_{\ell+1} - B_{\ell}) \cdot \frac{1}{n}.$$

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$\sum_{\ell=0}^{\infty} B_\ell \frac{x^\ell}{\ell!} := e^{e^x - 1}.$$

Theorem

$$B_\ell = \sum_{m=0}^\ell \left\{ egin{array}{c} \ell \ m \end{array}
ight\},$$

where $\left\{ \begin{array}{c} \ell \\ m \end{array} \right\}$ is the Stirling numbers of the second kind.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let $\ell \in \mathbb{N} \cup \{0\}$, then for $n > \ell$,

$$\sum_{k=1}^{n} \frac{A(n,k)}{n!} (n-k)^{\ell} = B_{\ell} - (B_{\ell+1} - B_{\ell}) \cdot \frac{1}{n}.$$

_ _ _ _ _ _

1. What is the limit of $\varepsilon_n := \mu_n - n - \mathcal{H}_{n-1}$?

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n .

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}}$$

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find lpha and eta, such that

$$\log(\alpha n) \leq \mu_n - n \leq \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k$
- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k$. In our case, the initial value is $\mu_1 = 0$.

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k$. In our case, the initial value is $\mu_1 = 0$. For generic initial value, say $\mu_1 = x$:

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k$. In our case, the initial value is $\mu_1 = 0$. For generic initial value, say $\mu_1 = x$:

• $\mu_n = a_n x + b_n$, a linear function of x;

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = \overline{1 + \sum_{k=1}^n \frac{A(n,k)}{n!} \mu_k}$. In our case, the initial value is $\mu_1 = 0$. For generic initial value, say $\mu_1 = x$:

$$\mu_n = a_n x + b_n, \text{ a linear function of } x;$$
$$a_n = \frac{\sum_{k=2}^{n-1} \frac{A(n,k)}{n!} a_k}{1 - \frac{A(n,n)}{n!}} \text{ and } b_n = \frac{1 + \sum_{k=2}^{n-1} \frac{A(n,k)}{n!} b_k}{1 - \frac{A(n,n)}{n!}}$$

- イロト (四) (王) (王) (王) (〇) (〇)

- 1. What is the limit of $\varepsilon_n := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and $\beta,$ such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^{n} \frac{A(n,k)}{n!} \mu_k$. In our case, the initial value is $\mu_1 = 0$. For generic initial value, say $\mu_1 = x$:

$$\mu_n = a_n x + b_n, \text{ a linear function of } x;$$

$$a_n = \frac{\sum_{k=2}^{n-1} \frac{A(n,k)}{n!} a_k}{1 - \frac{A(n,n)}{n!}} \text{ and } b_n = \frac{1 + \sum_{k=2}^{n-1} \frac{A(n,k)}{n!} b_k}{1 - \frac{A(n,n)}{n!}}$$
with $a_1 = 1$ and $b_1 = 0$.

- 1. What is the limit of $\overline{\varepsilon_n} := \mu_n n \mathcal{H}_{n-1}$?
- 2. Let $f_n(s) = \mathbb{E}[e^{sX_n}]$ be the moment generating function of X_n . Then,

$$f_n(s) = \frac{e^s\left(\sum_{k=1}^{n-1}\frac{A(n,k)}{n!}f_k(s)\right)}{1-e^s\frac{A(n,n)}{n!}} \Leftrightarrow \frac{1}{e^s} = \sum_{k=1}^n \frac{A(n,k)}{n!}\frac{f_k(s)}{f_n(s)}.$$

3. Originally, we want to find α and β , such that

$$\log(\alpha n) \le \mu_n - n \le \log(\beta n)$$

4. $\mu_n = 1 + \sum_{k=1}^{n} \frac{A(n,k)}{n!} \mu_k$. In our case, the initial value is $\mu_1 = 0$. For generic initial value, say $\mu_1 = x$:

$$\mu_n = a_n x + b_n$$
, a linear function of x;
 $a_n = rac{\sum\limits_{k=2}^{n-1} rac{A(n,k)}{n!} a_k}{1 - rac{A(n,n)}{n!}} ext{ and } b_n = rac{1 + \sum\limits_{k=2}^{n-1} rac{A(n,k)}{n!} b_n}{1 - rac{A(n,n)}{n!}}$

with $a_1 = 1$ and $b_1 = 0$. Apparently, $b_n = \mu_n$ and it seems that a_n has a limit.

- イロト ・ 回 ト ・ ヨ ト ・ ヨ ・ りんの

1.
$$\frac{A(n,k)}{n!} \rightarrow p_{n,k}$$

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k}$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

1.
$$\frac{A(n,k)}{n!}
ightarrow p_{n,k}$$

$$\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k$$

2. Inverse model

1.
$$\frac{A(n,k)}{n!}
ightarrow p_{n,k}$$
 $\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k$

2. Inverse model random trees

$$rac{A(n,k)}{n!}
ightarrow p_{n,k}$$
 $\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k$

2. Inverse model random trees

Definition

A Galton–Watson tree \mathcal{T} is a tree in which each node is given a random number of child nodes, where the numbers of child nodes are drawn independently from the same distribution ξ which is often called the offspring distribution.

$$rac{A(n,k)}{n!} o p_{n,k}$$
 $\mu_n = 1 + \sum_{k=1}^n p_{n,k} \mu_k$

2. Inverse model random trees

Definition

A Galton–Watson tree \mathcal{T} is a tree in which each node is given a random number of child nodes, where the numbers of child nodes are drawn independently from the same distribution ξ which is often called the offspring distribution.

 k^{k}

End: Any Questions?

ロット キョット キャー キー シャク