Shuffle to One, Shuffle to Normal

Lin Jiu

Zu Chongzhi Center for Mathematics and Computational Sciences

Duke Kunshan University

@ Number Theory Seminar, Department of Mathematics and Statistics, Dalhousie University

Jan. 31st, 2024

Acknowledgment

Acknowledgment

Dr. Shane Chern

Dr. Italo Simonelli

Acknowledgment

Dr. Shane Chern

Dr. Italo Simonelli

Dr. Xingshi Cai

Acknowledgment

Dr. Shane Chern

Dr. Xingshi Cai

Dr. Italo Simonelli

Duanduan Wang

Model

Communications in Statistics - Theory and Methods

A discrete probability problem in card shuffling

M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang \& Fu-Chih Cheng

To cite this article: M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang \& Fu-Chih Cheng (2016) A discrete probability problem in card shuffling, Communications in Statistics - Theory and Methods, 45:3, 612-620, DOI: 10.1080/03610926.2013.834451

To link to this article: http://dx.doi.org/10.1080/03610926.2013.834451

Model

Communications in Statistics - Theory and Methods

A discrete probability problem in card shuffling

M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang \& Fu-Chih Cheng

To cite this article: M. Bhaskara Rao, Haimeng Zhang, Chunfeng Huang \& Fu-Chih Cheng (2016) A discrete probability problem in card shuffling, Communications in Statistics - Theory and Methods, 45:3, 612-620, DOI: 10.1080/03610926.2013.834451

To link to this article: http://dx.doi.org/10.1080/03610926.2013.834451
"The original question raised was to determine how many times catalysts are expected to be added in order to get a single lump of all molecules."

Model

Model
Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left.

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left. "Shuffle to One".

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_{n} be the random number of steps it takes to shuffle n cards.

$$
\mathbb{E}\left[X_{n}\right]=\text { ? }
$$

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_{n} be the random number of steps it takes to shuffle n cards.

$$
\mathbb{E}\left[X_{n}\right]=\text { ? }
$$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any $n \geq 2$,

$$
n \leq \mathbb{E}\left[X_{n}\right] \leq n+\sqrt{n}
$$

Model

Model

Given n labeled card: $[n]:=\{1,2, \ldots, n\}$.

1. Cards are shuffled by a permutation $\tau \in S_{n}$.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left. "Shuffle to One".

Problem

Let X_{n} be the random number of steps it takes to shuffle n cards.

$$
\mathbb{E}\left[X_{n}\right]=\text { ? }
$$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any $n \geq 2$,

$$
n \leq \mathbb{E}\left[X_{n}\right] \leq n+\sqrt{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{n}=1 .
$$

Shuffle to Normal

Shuffle to Normal

Number of cards $=\mathbf{1 0}$

Number of cards $=30$

Number of cards $=\mathbf{2 0}$

Number of cards $\mathbf{= 5 0}$

Figure 1. Shuffling distributions with normal curves fitted.

Shuffle to Normal

Number of cards $=\mathbf{1 0}$

Number of cards $=30$

Number of cards $=\mathbf{2 0}$

Number of cards $\mathbf{= 5 0}$

Figure 1. Shuffling distributions with normal curves fitted.

$$
\mathbb{E}\left[X_{n}\right],
$$

Shuffle to Normal

Number of cards $=\mathbf{1 0}$

Number of cards $=30$

Number of cards $=\mathbf{2 0}$

Number of cards $=\mathbf{5 0}$

Figure 1. Shuffling distributions with normal curves fitted.

$$
\mathbb{E}\left[X_{n}\right], \quad \operatorname{Var}\left[X_{n}\right],
$$

Shuffle to Normal

Number of cards $=\mathbf{1 0}$

Number of cards $=30$

Number of cards $=\mathbf{2 0}$

Number of cards $=\mathbf{5 0}$

Figure 1. Shuffling distributions with normal curves fitted.

$\mathbb{E}\left[X_{n}\right], \quad \operatorname{Var}\left[X_{n}\right], \quad$ Central Limit Theorem

Shuffle to Normal

Number of cards $=\mathbf{1 0}$

Number of cards $=30$

Number of cards $=\mathbf{2 0}$

Number of cards $=50$

Figure 1. Shuffling distributions with normal curves fitted.

$\mathbb{E}\left[X_{n}\right], \quad \operatorname{Var}\left[X_{n}\right], \quad$ Central Limit Theorem

Remark

Experiments shows $\mathbb{E}\left[X_{n}\right]-n \sim \log n$.

Conditional Expectation

Conditional Expectation

[n]

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k]
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k}
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:
$>$ There is a recurrence involving μ_{n} and $p_{n, k}$.

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:
$>$ There is a recurrence involving μ_{n} and $p_{n, k}$.

- The recurrence it linear

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:
$>$ There is a recurrence involving μ_{n} and $p_{n, k}$.
\rightarrow The recurrence it linear but not holonomic.

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k}
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:
$>$ There is a recurrence involving μ_{n} and $p_{n, k}$.
$>$ The recurrence it linear but not holonomic.

- The conditional expectation recurrence

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k} .
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:

- There is a recurrence involving μ_{n} and $p_{n, k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k} \Rightarrow \mu_{n}=\frac{\sum_{k=1}^{n-1} p_{n, k} \mu_{k}}{1-p_{n, n}}
$$

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k} .
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:

- There is a recurrence involving μ_{n} and $p_{n, k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k} \Rightarrow \mu_{n}=\frac{\sum_{k=1}^{n-1} p_{n, k} \mu_{k}}{1-p_{n, n}}
$$

works for general card shuffling models.

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k} .
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:

- There is a recurrence involving μ_{n} and $p_{n, k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k} \Rightarrow \mu_{n}=\frac{\sum_{k=1}^{n-1} p_{n, k} \mu_{k}}{1-p_{n, n}}
$$

works for general card shuffling models.

1. "general" refers to other models that reduce the number of cards in a different way.

Conditional Expectation

$$
[n] \xrightarrow{\tau}[k] \text { with probability } p_{n, k}
$$

Namely,

$$
X_{n}=1+X_{k} \text { with probability } p_{n, k} \Rightarrow \mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n}\left(1+\mathbb{E}\left[X_{k}\right]\right) p_{n, k} .
$$

Let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$:

- There is a recurrence involving μ_{n} and $p_{n, k}$.
- The recurrence it linear but not holonomic.
- The conditional expectation recurrence

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k} \Rightarrow \mu_{n}=\frac{\sum_{k=1}^{n-1} p_{n, k} \mu_{k}}{1-p_{n, n}}
$$

works for general card shuffling models.

1. "general" refers to other models that reduce the number of cards in a different way.
2. And if given the sequence $p_{n, k}$, to find the asymptotic expression of μ_{n} can be considered independent of the shuffling model.

$n=2$ and $n=3$

1. For $n=2$:

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$$
\mu_{3}=\frac{1}{6} \cdot 1
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$$
\mu_{3}=\frac{1}{6} \cdot 1+\frac{1}{3} \cdot\left(1+\mu_{2}\right)
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$$
\mu_{3}=\frac{1}{6} \cdot 1+\frac{1}{3} \cdot\left(1+\mu_{2}\right)+\frac{1}{2} \cdot\left(1+\mu_{3}\right)
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$$
\mu_{3}=\frac{1}{6} \cdot 1+\frac{1}{3} \cdot\left(1+\mu_{2}\right)+\frac{1}{2} \cdot\left(1+\mu_{3}\right) \Rightarrow \mu_{3}=\frac{1+\frac{2}{3}}{1-\frac{1}{2}}=\frac{10}{3}
$$

$n=2$ and $n=3$

1. For $n=2$:

$$
\mu_{2}=\frac{1}{2} \cdot 1+\left(\frac{1}{2}\right)^{2} \cdot 2+\cdots+\left(\frac{1}{2}\right)^{n} n+\cdots=\left(\frac{x}{(1-x)^{2}}\right)_{x=\frac{1}{2}}=2 \operatorname{Var}\left(X_{2}\right)=2
$$

2. For $n=3$:

$$
\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{2,1,3\},\{3,2,1\}
$$

$$
\mu_{3}=\frac{1}{6} \cdot 1+\frac{1}{3} \cdot\left(1+\mu_{2}\right)+\frac{1}{2} \cdot\left(1+\mu_{3}\right) \Rightarrow \mu_{3}=\frac{1+\frac{2}{3}}{1-\frac{1}{2}}=\frac{10}{3} \quad \operatorname{Var}\left(X_{3}\right)=\frac{38}{9} .
$$

$p_{n, k}=A(n, k) / n!$

Definition

A permutation of n integers $1,2, \ldots, n$ is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

$p_{n, k}=A(n, k) / n!$

Definition

A permutation of n integers $1,2, \ldots, n$ is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps
7654321 seven lumps

$p_{n, k}=A(n, k) / n!$

Definition

A permutation of n integers $1,2, \ldots, n$ is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps
7654321 seven lumps

Theorem

The number of lumps of permutations of $[n]$ is

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!} .
$$

$p_{n, k}=A(n, k) / n!$

Definition

A permutation of n integers $1,2, \ldots, n$ is said to have k lumps if and only if when the numbers are read from left to right, after the numbers in consecutive increasing order are merged, there are exactly k mergers including those standing alone.

2345671 two lumps
7654321 seven lumps

Theorem

The number of lumps of permutations of $[n]$ is

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!} .
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

1.

$$
A(n, k)=\binom{n-1}{k-1} A(k-1)
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

1.

$$
A(n, k)=\binom{n-1}{k-1} A(k-1) \quad A 000255
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

1.

$$
\begin{gathered}
A(n, k)=\binom{n-1}{k-1} A(k-1) \quad A 000255 \\
A(0)=A(1)=1, \quad A(n)=n A(n-1)+(n-1) A(n-2)
\end{gathered}
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

1.

$$
\begin{gathered}
A(n, k)=\binom{n-1}{k-1} A(k-1) \quad A 000255 \\
A(0)=A(1)=1, \quad A(n)=n A(n-1)+(n-1) A(n-2) \\
\sum_{k=0}^{\infty} A(k) \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}} .
\end{gathered}
$$

$$
A(n, k)=\binom{n-1}{k-1} \frac{(k+1)!}{k} \sum_{j=0}^{k+1} \frac{(-1)^{j}}{j!}
$$

1.

$$
\begin{gathered}
A(n, k)=\binom{n-1}{k-1} A(k-1) \quad A 000255 \\
A(0)=A(1)=1, \quad A(n)=n A(n-1)+(n-1) A(n-2) \\
\sum_{k=0}^{\infty} A(k) \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}} .
\end{gathered}
$$

2. $A(n, k): A 010027$.
$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

4 回 >4 廌 >4 三 >4 三 三ㅡㄹ 9 Q

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Then,

$$
0<\varepsilon_{n}-\varepsilon_{n+1}<\frac{1}{n^{2}} .
$$

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Then,

$$
0<\varepsilon_{n}-\varepsilon_{n+1}<\frac{1}{n^{2}} .
$$

1. ε_{n} has a limit

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Then,

$$
0<\varepsilon_{n}-\varepsilon_{n+1}<\frac{1}{n^{2}} .
$$

1. ε_{n} has a limit
2.

$$
\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}
$$

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Then,

$$
0<\varepsilon_{n}-\varepsilon_{n+1}<\frac{1}{n^{2}} .
$$

1. ε_{n} has a limit
2.

$$
\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k} \quad\left(\mu_{1}:=0\right)
$$

$\mu_{n}=\mathbb{E}\left[X_{n}\right]$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$, where the harmonic number is defined by

$$
\mathcal{H}_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

Then,

$$
0<\varepsilon_{n}-\varepsilon_{n+1}<\frac{1}{n^{2}} .
$$

1. ε_{n} has a limit
2.

$$
\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k} \quad\left(\mu_{1}:=0\right)
$$

3. Abel summation by parts:

Lemma $\left(U(n):=\sum_{k=1}^{n} u_{k}\right)$

$$
\sum_{n=1}^{N} u_{n} v_{n}=U(N) v_{N+1}+\sum_{n=1}^{N} U(n)\left(v_{n}-v_{n+1}\right)
$$

$\operatorname{Var}\left[X_{n}\right]$
《口〉《回〉《三〉4E〉 三 つQく

$\operatorname{Var}\left[X_{n}\right]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any $n \geq 2$,
$E\left(X_{n}^{2}\right)=\left(1+2 \sum_{k=2}^{n} \frac{A(n, k)}{n!} E\left(X_{k}\right)+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} E\left(X_{k}^{2}\right)\right) /\left(1-\frac{A(n, n)}{n!}\right)$

$\operatorname{Var}\left[X_{n}\right]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any $n \geq 2$,
$E\left(X_{n}^{2}\right)=\left(1+2 \sum_{k=2}^{n} \frac{A(n, k)}{n!} E\left(X_{k}\right)+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} E\left(X_{k}^{2}\right)\right) /\left(1-\frac{A(n, n)}{n!}\right)$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
$\operatorname{Var}\left[X_{n}\right]=\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{2}\right] \sim n$.

$\operatorname{Var}\left[X_{n}\right]$

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any $n \geq 2$,

$$
E\left(X_{n}^{2}\right)=\left(1+2 \sum_{k=2}^{n} \frac{A(n, k)}{n!} E\left(X_{k}\right)+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} E\left(X_{k}^{2}\right)\right) /\left(1-\frac{A(n, n)}{n!}\right)
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
$\operatorname{Var}\left[X_{n}\right]=\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{2}\right] \sim n$.

1. The ultimate goal is to show

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{w} Z \sim \mathcal{N}(0,1)
$$

2.

$$
\left(1-\frac{A(n, n)}{n!}\right) \operatorname{Var}\left[X_{n}\right]=\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \operatorname{Var}\left[X_{k}\right]+1+O\left(n^{-1}\right)
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\left\{\lambda_{n}\right\} \subset \mathbb{C}$ with $\lambda_{n} \sim M n^{L}$ as $n \rightarrow \infty$ for fixed $L \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_{n} by the recurrence

$$
\left(1-\frac{A(n, n)}{n!}\right) \xi_{n}=\lambda_{n}+\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \xi_{k}
$$

for $n>n_{0} \geq 2$ with initial values $\xi_{1}, \ldots, \xi_{n_{0}}$. Then, as $n \rightarrow \infty$, 1.

$$
\xi_{n} \sim \frac{M}{L+1} n^{L+1}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\left\{\lambda_{n}\right\} \subset \mathbb{C}$ with $\lambda_{n} \sim M n^{L}$ as $n \rightarrow \infty$ for fixed $L \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_{n} by the recurrence

$$
\left(1-\frac{A(n, n)}{n!}\right) \xi_{n}=\lambda_{n}+\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \xi_{k}
$$

for $n>n_{0} \geq 2$ with initial values $\xi_{1}, \ldots, \xi_{n_{0}}$. Then, as $n \rightarrow \infty$, 1.

$$
\xi_{n} \sim \frac{M}{L+1} n^{L+1}
$$

2.

$$
\eta_{n}:=\xi_{n}-\frac{M}{L+1} n^{L+1}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\left\{\lambda_{n}\right\} \subset \mathbb{C}$ with $\lambda_{n} \sim M n^{L}$ as $n \rightarrow \infty$ for fixed $L \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_{n} by the recurrence

$$
\left(1-\frac{A(n, n)}{n!}\right) \xi_{n}=\lambda_{n}+\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \xi_{k}
$$

for $n>n_{0} \geq 2$ with initial values $\xi_{1}, \ldots, \xi_{n_{0}}$. Then, as $n \rightarrow \infty$, 1.

$$
\xi_{n} \sim \frac{M}{L+1} n^{L+1}
$$

2.

$$
\eta_{n}:=\xi_{n}-\frac{M}{L+1} n^{L+1} \Rightarrow\left|\eta_{n}\right|<C \sum_{j=1}^{n}\left(\delta_{j}+j^{L-1}\right),
$$

for some positive constant $C(L, M)$ and $\delta_{n}:=\lambda_{n}-M n^{L}$.

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\left\{\lambda_{n}\right\} \subset \mathbb{C}$ with $\lambda_{n} \sim M n^{L}$ as $n \rightarrow \infty$ for fixed $L \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_{n} by the recurrence

$$
\left(1-\frac{A(n, n)}{n!}\right) \xi_{n}=\lambda_{n}+\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \xi_{k}
$$

for $n>n_{0} \geq 2$ with initial values $\xi_{1}, \ldots, \xi_{n_{0}}$. Then, as $n \rightarrow \infty$,
1.

$$
\xi_{n} \sim \frac{M}{L+1} n^{L+1}
$$

2.

$$
\eta_{n}:=\xi_{n}-\frac{M}{L+1} n^{L+1} \Rightarrow\left|\eta_{n}\right|<C \sum_{j=1}^{n}\left(\delta_{j}+j^{L-1}\right),
$$

for some positive constant $C(L, M)$ and $\delta_{n}:=\lambda_{n}-M n^{L}$.
Recall

$$
\left(1-\frac{A(n, n)}{n I}\right) \operatorname{Var}\left[X_{n}\right]=\sum^{n-1} \frac{A(n, k)}{n!} \operatorname{Var}\left[X_{k}\right]+1+O\left(n^{-1}\right)
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\left\{\lambda_{n}\right\} \subset \mathbb{C}$ with $\lambda_{n} \sim M n^{L}$ as $n \rightarrow \infty$ for fixed $L \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{C}$, where $M \neq 0$ if $L \neq 0$. Define sequence ξ_{n} by the recurrence

$$
\left(1-\frac{A(n, n)}{n!}\right) \xi_{n}=\lambda_{n}+\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \xi_{k}
$$

for $n>n_{0} \geq 2$ with initial values $\xi_{1}, \ldots, \xi_{n_{0}}$. Then, as $n \rightarrow \infty$,
1.

$$
\xi_{n} \sim \frac{M}{L+1} n^{L+1}
$$

2.

$$
\eta_{n}:=\xi_{n}-\frac{M}{L+1} n^{L+1} \Rightarrow\left|\eta_{n}\right|<C \sum_{j=1}^{n}\left(\delta_{j}+j^{L-1}\right),
$$

for some positive constant $C(L, M)$ and $\delta_{n}:=\lambda_{n}-M n^{L}$.
Recall

$$
\left(1-\frac{A(n, n)}{n I}\right) \operatorname{Var}\left[X_{n}\right]=\sum^{n-1} \frac{A(n, k)}{n!} \operatorname{Var}\left[X_{k}\right]+1+O\left(n^{-1}\right)
$$

$Z \sim \mathcal{N}(0,1)$
Problem
What are the (central) moments of Z ?

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z
$$

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z= \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z= \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
For every $m \geq 2$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]= \begin{cases}(2 M-1)!!n^{M}+O\left(n^{M-1} \log n\right), & m=2 M ; \\ \frac{2}{3} M(2 M+1)!!n^{M}+O\left(n^{M-1} \log n\right) & m=2 M+1\end{cases}
$$

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z= \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
For every $m \geq 2$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]= \begin{cases}(2 M-1)!!n^{M}+O\left(n^{M-1} \log n\right), & m=2 M ; \\ \frac{2}{3} M(2 M+1)!!n^{M}+O\left(n^{M-1} \log n\right) & m=2 M+1 .\end{cases}
$$

Corollary (S. Chern, L. Jiu, and I. Simonelli)

$$
Z_{n}:=\frac{X_{n}-\mu_{n}}{\sqrt{\operatorname{Var}\left[X_{n}\right]}}
$$

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z= \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
For every $m \geq 2$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]= \begin{cases}(2 M-1)!!n^{M}+O\left(n^{M-1} \log n\right), & m=2 M ; \\ \frac{2}{3} M(2 M+1)!!n^{M}+O\left(n^{M-1} \log n\right) & m=2 M+1 .\end{cases}
$$

Corollary (S. Chern, L. Jiu, and I. Simonelli)

$$
Z_{n}:=\frac{X_{n}-\mu_{n}}{\sqrt{\operatorname{Var}\left[X_{n}\right]}} \Rightarrow \mathrm{E}\left[Z_{n}^{m}\right]=\frac{\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]}{\operatorname{Var}\left[X_{n}\right]^{m / 2}}
$$

$Z \sim \mathcal{N}(0,1)$

Problem

What are the (central) moments of Z ?

$$
\mathbb{E}\left[Z^{m}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{m} e^{-\frac{z^{2}}{2}} d z= \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)
For every $m \geq 2$, as $n \rightarrow \infty$,

$$
\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]= \begin{cases}(2 M-1)!!n^{M}+O\left(n^{M-1} \log n\right), & m=2 M ; \\ \frac{2}{3} M(2 M+1)!!n^{M}+O\left(n^{M-1} \log n\right) & m=2 M+1\end{cases}
$$

Corollary (S. Chern, L. Jiu, and I. Simonelli)

$$
Z_{n}:=\frac{X_{n}-\mu_{n}}{\sqrt{\operatorname{Var}\left[X_{n}\right]}} \Rightarrow E\left[Z_{n}^{m}\right]=\frac{\mathbb{E}\left[\left(X_{n}-\mu_{n}\right)^{m}\right]}{\operatorname{Var}\left[X_{n}\right]^{m / 2}} \rightarrow \begin{cases}0, & m \text { odd } ; \\ (m-1)!!, & m \text { even } .\end{cases}
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\frac{x_{n}-n}{\sqrt{n}} \xrightarrow{m} Z \sim \mathcal{N}(0,1) .
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{w} Z \sim \mathcal{N}(0,1) .
$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{w} Z \sim \mathcal{N}(0,1) .
$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.
\downarrow From $X_{n}=1+X_{k}$ with probability $p_{n, k}$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{w} Z \sim \mathcal{N}(0,1)
$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.
\downarrow From $X_{n}=1+X_{k}$ with probability $p_{n, k}$, for any polynomial $p(x)$:

$$
\mathrm{E}\left[p\left(X_{n}\right)\right]=\sum_{k=1}^{n} \mathrm{P}\left(Y_{n}=k\right) \mathrm{E}\left[p\left(1+X_{k}\right)\right]=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \cdot \mathrm{E}\left[p\left(1+X_{k}\right)\right]
$$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\frac{X_{n}-n}{\sqrt{n}} \xrightarrow{w} Z \sim \mathcal{N}(0,1) .
$$

Proof.

By Chebyshev's method of moments, the weak convergence is obtained.
\downarrow From $X_{n}=1+X_{k}$ with probability $p_{n, k}$, for any polynomial $p(x)$:

$$
\mathrm{E}\left[p\left(X_{n}\right)\right]=\sum_{k=1}^{n} \mathrm{P}\left(Y_{n}=k\right) \mathrm{E}\left[p\left(1+X_{k}\right)\right]=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \cdot \mathrm{E}\left[p\left(1+X_{k}\right)\right]
$$

$$
\begin{aligned}
& \left(1-\frac{A(n, n)}{n!}\right) E\left[\left(X_{n}-\mu_{n}\right)^{2 M}\right]=\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \mathrm{E}\left[\left(X_{k}-\mu_{k}\right)^{2 M}\right]+* \\
& \left(1-\frac{A(n, n)}{n!}\right) \mathrm{E}\left[\left(X_{n}-\mu_{n}\right)^{2 M+1}\right]=\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} \mathrm{E}\left[\left(X_{k}-\mu_{k}\right)^{2 M+1}\right]+* *
\end{aligned}
$$

Back to $A(n, k)$

Back to $A(n, k)$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Back to $A(n, k)$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}\right) n x^{n}=\frac{x z e^{x(1-z)}}{(1-x z)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}=\sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m}(1-z)^{m}
$$

Back to $A(n, k)$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}\right) n x^{n}=\frac{x z e^{x(1-z)}}{(1-x z)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}=\sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m}(1-z)^{m}
$$

Lemma (S. Chern, L. Jiu, and I. Simonelli)
For $n \geq 1$,

$$
\sum_{t=1}^{n} S_{n}(t) z^{t}=z^{n}+\sum_{m=1}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m}(1-z)^{m-1}
$$

where

$$
S_{n}(t):=\sum_{k=1}^{t} \frac{A(n, k)}{n!} .
$$

Back to $A(n, k)$

Theorem (S. Chern, L. Jiu, and I. Simonelli)

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}\right) n x^{n}=\frac{x z e^{x(1-z)}}{(1-x z)^{2}} \Rightarrow \sum_{k=1}^{n} \frac{A(n, k)}{n!} z^{k}=\sum_{m=0}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m}(1-z)^{m}
$$

Lemma (S. Chern, L. Jiu, and I. Simonelli)
For $n \geq 1$,

$$
\sum_{t=1}^{n} S_{n}(t) z^{t}=z^{n}+\sum_{m=1}^{n-1} \frac{n-m}{n \cdot m!} z^{n-m}(1-z)^{m-1},
$$

$$
S_{n}(t):=\sum_{k=1}^{t} \frac{A(n, k)}{n!} .
$$

Corollary (S. Chern, L. Jiu, and I. Simonelli)

$$
\sum_{t=1}^{n} S_{n}(t) \cdot \frac{1}{t^{2}}=\frac{1}{n^{2}}+\sum_{m=1}^{n-1} \frac{(n-m-1)!}{n \cdot n!}+\sum_{m=1}^{n-1} \frac{(n-m)!}{m \cdot n!}\left(\mathcal{H}_{n}-\mathcal{H}_{n-m}\right)
$$

Bell Numbers

Bell Numbers

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$
\sum_{\ell=0}^{\infty} B_{\ell} \frac{x^{\ell}}{\ell!}:=e^{e^{x}-1} .
$$

Bell Numbers

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$
\sum_{\ell=0}^{\infty} B_{\ell} \frac{x^{\ell}}{\ell!}:=e^{e^{x}-1} .
$$

Theorem

$$
B_{\ell}=\sum_{m=0}^{\ell}\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\},
$$

where $\left\{\begin{array}{c}\ell \\ m\end{array}\right\}$ is the Stirling numbers of the second kind.

Bell Numbers

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$
\sum_{\ell=0}^{\infty} B_{\ell} \frac{x^{\ell}}{\ell!}:=e^{e^{x}-1}
$$

Theorem

$$
B_{\ell}=\sum_{m=0}^{\ell}\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\},
$$

where $\left\{\begin{array}{l}\ell \\ m\end{array}\right\}$ is the Stirling numbers of the second kind.
Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\ell \in \mathbb{N} \cup\{0\}$, then for $n \geq \ell$,

$$
\sum_{k=1}^{n} \frac{A(n, k)}{n!}(n-k)^{\ell}=B_{\ell}-\left(B_{\ell+1}-B_{\ell}\right) \cdot \frac{1}{n}
$$

Bell Numbers

Definition

The Bell numbers B_{ℓ} are given by the exponential generating function

$$
\sum_{\ell=0}^{\infty} B_{\ell} \frac{x^{\ell}}{\ell!}:=e^{e^{x}-1}
$$

Theorem

$$
B_{\ell}=\sum_{m=0}^{\ell}\left\{\begin{array}{l}
\ell \\
m
\end{array}\right\},
$$

where $\left\{\begin{array}{l}\ell \\ m\end{array}\right\}$ is the Stirling numbers of the second kind.
Theorem (S. Chern, L. Jiu, and I. Simonelli)
Let $\ell \in \mathbb{N} \cup\{0\}$, then for $n \geq \ell$,

$$
\sum_{k=1}^{n} \frac{A(n, k)}{n!}(n-k)^{\ell}=B_{\ell}-\left(B_{\ell+1}-B_{\ell}\right) \cdot \frac{1}{n}
$$

Further Discussion: μ_{n}

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}.

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}}
$$

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$.

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$. For generic initial value, say $\mu_{1}=x$:

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$. For generic initial value, say $\mu_{1}=x$:
$>\mu_{n}=a_{n} x+b_{n}$, a linear function of x;

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$. For generic initial value, say $\mu_{1}=x$:
$>\mu_{n}=a_{n} x+b_{n}$, a linear function of x;

$$
a_{n}=\frac{\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} a_{k}}{1-\frac{A(n, n)}{n!}} \quad \text { and } \quad b_{n}=\frac{1+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} b_{k}}{1-\frac{A(n, n)}{n!}}
$$

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)} .
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$. For generic initial value, say $\mu_{1}=x$:
$>\mu_{n}=a_{n} x+b_{n}$, a linear function of x;

$$
a_{n}=\frac{\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} a_{k}}{1-\frac{A(n, n)}{n!}} \quad \text { and } \quad b_{n}=\frac{1+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} b_{k}}{1-\frac{A(n, n)}{n!}}
$$

with $a_{1}=1$ and $b_{1}=0$.

Further Discussion: μ_{n}

1. What is the limit of $\varepsilon_{n}:=\mu_{n}-n-\mathcal{H}_{n-1}$?
2. Let $f_{n}(s)=\mathbb{E}\left[e^{s X_{n}}\right]$ be the moment generating function of X_{n}. Then,

$$
f_{n}(s)=\frac{e^{s}\left(\sum_{k=1}^{n-1} \frac{A(n, k)}{n!} f_{k}(s)\right)}{1-e^{s} \frac{A(n, n)}{n!}} \cdot \Leftrightarrow \frac{1}{e^{s}}=\sum_{k=1}^{n} \frac{A(n, k)}{n!} \frac{f_{k}(s)}{f_{n}(s)}
$$

3. Originally, we want to find α and β, such that

$$
\log (\alpha n) \leq \mu_{n}-n \leq \log (\beta n)
$$

4. $\mu_{n}=1+\sum_{k=1}^{n} \frac{A(n, k)}{n!} \mu_{k}$. In our case, the initial value is $\mu_{1}=0$. For generic initial value, say $\mu_{1}=x$:
$>\mu_{n}=a_{n} x+b_{n}$, a linear function of x;

$$
a_{n}=\frac{\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} a_{k}}{1-\frac{A(n, n)}{n!}} \quad \text { and } \quad b_{n}=\frac{1+\sum_{k=2}^{n-1} \frac{A(n, k)}{n!} b_{k}}{1-\frac{A(n, n)}{n!}}
$$

with $a_{1}=1$ and $b_{1}=0$. Apparently, $b_{n}=\mu_{n}$ and it seems that a_{n} has a limit.

Further Discussion: General Model

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

2. Inverse model

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

2. Inverse model random trees

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

2. Inverse model random trees

Definition

A Galton-Watson tree \mathcal{T} is a tree in which each node is given a random number of child nodes, where the numbers of child nodes are drawn independently from the same distribution ξ which is often called the offspring distribution.

Further Discussion: General Model

1. $\frac{A(n, k)}{n!} \rightarrow p_{n, k}$

$$
\mu_{n}=1+\sum_{k=1}^{n} p_{n, k} \mu_{k}
$$

2. Inverse model random trees

Definition

A Galton-Watson tree \mathcal{T} is a tree in which each node is given a random number of child nodes, where the numbers of child nodes are drawn independently from the same distribution ξ which is often called the offspring distribution.

End: Any Questions?

