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Model

“The original question raised was to determine how many times catalysts
are expected to be added in order to get a single lump of all molecules.”
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Model
Model
Given n labeled card: [n] := {1, 2, . . . , n}.

1. Cards are shuffled by a permutation τ ∈ Sn.
2. Cards with consecutive numbers in increasing order are merged.
3. Cards are renumbered
4. We stop until only one card is left. “Shuffle to One”.

Problem
Let Xn be the random number of steps it takes to shuffle n cards.

E[Xn] =?

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)

For any n ≥ 2,

n ≤ E[Xn] ≤ n +
√
n ⇒ lim

n→∞

E[Xn]

n
= 1.
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Conditional Expectation

[n]
τ−→ [k] with probability pn,k

Namely,

Xn = 1 + Xk with probability pn,k ⇒ E[Xn] =
n∑

k=1

(1 + E[Xk ]) pn,k .

Let µn = E[Xn]:
▶ There is a recurrence involving µn and pn,k .
▶ The recurrence it linear but not holonomic.
▶ The conditional expectation recurrence

µn = 1 +
n∑

k=1

pn,kµk ⇒ µn =

∑n−1
k=1 pn,kµk

1 − pn,n

works for general card shuffling models.
1. “general” refers to other models that reduce the number of cards in a

different way.
2. And if given the sequence pn,k , to find the asymptotic expression of

µn can be considered independent of the shuffling model.
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n = 2 and n = 3

1. For n = 2:

µ2 =
1
2
·1+
(

1
2

)2

·2+· · ·+
(

1
2

)n

n+· · · =
(

x

(1 − x)2

)
x= 1

2

= 2 Var(X2) = 2

2. For n = 3:

{1, 2, 3}, {2, 3, 1}, {3, 1, 2}, {1, 3, 2}, {2, 1, 3}, {3, 2, 1}

µ3 =
1
6
·1+1

3
·(1+µ2)+

1
2
·(1+µ3) ⇒ µ3 =

1 + 2
3

1 − 1
2

=
10
3

Var(X3) =
38
9
.
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pn,k = A(n, k)/n!

Definition
A permutation of n integers 1, 2, ..., n is said to have k lumps if and only
if when the numbers are read from left to right, after the numbers in
consecutive increasing order are merged, there are exactly k mergers
including those standing alone.

2345671 two lumps
7654321 seven lumps

Theorem
The number of lumps of permutations of [n] is

A(n, k) =

(
n − 1
k − 1

)
(k + 1)!

k

k+1∑
j=0

(−1)j

j!
.
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A(n, k) =
(
n−1
k−1

) (k+1)!
k

∑k+1
j=0

(−1)j

j!

.

1.

A(n, k) =

(
n − 1
k − 1

)
A(k − 1) A000255

A(0) = A(1) = 1, A(n) = nA(n − 1) + (n − 1)A(n − 2)

∞∑
k=0

A(k)
xn

n!
=

e−x

(1 − x)2
.

2. A(n, k): A010027.
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µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit

2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk

(µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



µn = E[Xn]

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let εn := µn − n −Hn−1, where the harmonic number is defined by

Hn := 1 +
1
2
+ · · ·+ 1

n
.

Then,

0 < εn − εn+1 <
1
n2 .

1. εn has a limit
2.

µn = 1 +
n∑

k=1

A(n, k)

n!
µk (µ1 := 0)

3. Abel summation by parts:

Lemma (U(n) :=
∑n

k=1 uk)

N∑
n=1

unvn = U(N)vN+1 +
N∑

n=1

U(n) (vn − vn+1)



Var[Xn]

Theorem (M. Rao, H. Zhang, C. Huang, and F.-C. Cheng)
For any n ≥ 2,

E
(
X 2

n

)
=

(
1 + 2

n∑
k=2

A(n, k)

n!
E (Xk) +

n−1∑
k=2

A(n, k)

n!
E
(
X 2

k

))
/

(
1 − A(n, n)

n!

)

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Var[Xn] = E[(Xn − µn)
2] ∼ n.

1. The ultimate goal is to show

Xn − n√
n

w→ Z ∼ N (0, 1).

2. (
1 − A(n, n)

n!

)
Var [Xn] =

n−1∑
k=1

A(n, k)

n!
Var [Xk ] + 1 + O

(
n−1)
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Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let {λn} ⊂ C with λn ∼ MnL as n → ∞ for fixed L ∈ N ∪ {0} and
M ∈ C, where M ̸= 0 if L ̸= 0. Define sequence ξn by the recurrence(

1 − A(n, n)

n!

)
ξn = λn +

n−1∑
k=1

A(n, k)

n!
ξk ,

for n > n0 ≥ 2 with initial values ξ1, . . . , ξn0 . Then, as n → ∞,
1.

ξn ∼ M

L+ 1
nL+1

2.

ηn := ξn −
M

L+ 1
nL+1 ⇒ |ηn| < C

n∑
j=1

(
δj + jL−1) ,

for some positive constant C (L,M) and δn := λn −MnL.

Recall(
1 − A(n, n)

n!

)
Var [Xn] =

n−1∑
k=1

A(n, k)

n!
Var [Xk ] + 1 + O

(
n−1)
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Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz

=

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2

→

{
0, m odd;
(m − 1)!!, m even.



Z ∼ N (0, 1)
Problem
What are the (central) moments of Z?

E[Zm] =
1√
2π

∫
R
zme−

z2
2 dz =

{
0, m odd;
(m − 1)!!, m even.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

For every m ≥ 2, as n → ∞,

E [(Xn − µn)
m] =

{
(2M − 1)!!nM + O(nM−1 log n), m = 2M;
2
3M(2M + 1)!!nM + O(nM−1 log n) m = 2M + 1.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

Zn :=
Xn − µn√
Var[Xn]

⇒ E[Zm
n ] =

E [(Xn − µn)
m]

Var[Xn]m/2 →

{
0, m odd;
(m − 1)!!, m even.



Theorem (S. Chern, L. Jiu, and I. Simonelli)

Xn − n√
n

w→ Z ∼ N (0, 1).

Proof.
By Chebyshev’s method of moments, the weak convergence is obtained.

▶ From Xn = 1 + Xk with probability pn,k , for any polynomial p(x):

E [p (Xn)] =
n∑

k=1

P (Yn = k)E [p (1 + Xk)] =
n∑

k=1

A(n, k)

n!
·E [p (1 + Xk)]

▶ (
1 − A(n, n)

n!

)
E
[
(Xn − µn)

2M
]
=

n−1∑
k=1

A(n, k)

n!
E
[
(Xk − µk)

2M
]
+ ∗

(
1 − A(n, n)

n!

)
E
[
(Xn − µn)

2M+1
]
=

n−1∑
k=1

A(n, k)

n!
E
[
(Xk − µk)

2M+1
]
+ ∗∗
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Back to A(n, k)

Theorem (S. Chern, L. Jiu, and I. Simonelli)

∞∑
n=1

(
n∑

k=1

A(n, k)

n!
zk

)
nxn =

xzex(1−z)

(1 − xz)2
⇒

n∑
k=1

A(n, k)

n!
zk =

n−1∑
m=0

n −m

n ·m!
zn−m(1 − z)m

Lemma (S. Chern, L. Jiu, and I. Simonelli)

For n ≥ 1, n∑
t=1

Sn(t)z
t = zn +

n−1∑
m=1

n −m

n ·m!
zn−m(1 − z)m−1,

where Sn(t) :=
t∑

k=1

A(n, k)

n!
.

Corollary (S. Chern, L. Jiu, and I. Simonelli)
n∑

t=1

Sn(t) ·
1
t2

=
1
n2 +

n−1∑
m=1

(n −m − 1)!
n · n!

+
n−1∑
m=1

(n −m)!

m · n!
(Hn −Hn−m)
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Bell Numbers

Definition
The Bell numbers Bℓ are given by the exponential generating function

∞∑
ℓ=0

Bℓ
xℓ

ℓ!
:= ee

x−1.

Theorem

Bℓ =
ℓ∑

m=0

{
ℓ
m

}
,

where
{

ℓ
m

}
is the Stirling numbers of the second kind.

Theorem (S. Chern, L. Jiu, and I. Simonelli)

Let ℓ ∈ N ∪ {0}, then for n ≥ ℓ,

n∑
k=1

A(n, k)

n!
(n − k)ℓ = Bℓ − (Bℓ+1 − Bℓ) ·

1
n
.

Corollary (S. Chern, L. Jiu, and I. Simonelli)

For ℓ1, ℓ2 ∈ N ∪ {0}, as n → ∞

n∑
k=1

A(n, k)

n!
(n − k)ℓ1 (µn − µk)

ℓ2 = Bℓ1+ℓ2 + O
(
n−1)
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Further Discussion: µn

1. What is the limit of εn := µn − n −Hn−1?
2. Let fn(s) = E[esXn ] be the moment generating function of Xn. Then,

fn(s) =
es

(∑n−1
k=1

A(n,k)
n! fk(s)

)
1 − es A(n,n)n!

. ⇔ 1
es

=
n∑

k=1

A(n, k)

n!

fk(s)

fn(s)
.

3. Originally, we want to find α and β, such that

log(αn) ≤ µn − n ≤ log(βn)

4. µn = 1 +
∑n

k=1
A(n,k)

n! µk . In our case, the initial value is µ1 = 0. For
generic initial value, say µ1 = x :
▶ µn = anx + bn, a linear function of x ;
▶

an =

n−1∑
k=2

A(n,k)
n!

ak

1 − A(n,n)
n!

and bn =

1 +
n−1∑
k=2

A(n,k)
n!

bk

1 − A(n,n)
n!

with a1 = 1 and b1 = 0. Apparently, bn = µn and it seems that an
has a limit.
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Further Discussion: General Model

1. A(n,k)
n! → pn,k

µn = 1 +
n∑

k=1

pn,kµk

2. Inverse model random trees

Definition
A Galton–Watson tree T is a tree in which each node is given a random
number of child nodes, where the numbers of child nodes are drawn
independently from the same distribution ξ which is often called the
offspring distribution.
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End: Any Questions?


