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Early Work with Karl Dilcher

We computed the Hankel determinants
of the following sequences:

1 1
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18 (2023), 146-175. (2k + 3)Bax (2k + 2) Exk+1(1)
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18 (2022), 331-359. (2k + 1) By, -2 | Eopss(1)
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TABLE 2. Summary of results.
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Definition
The Bernoulli polynomials B,(x) and Euler polynomials E,(x) are given
by their exponential generating functions

text ee tk 2ext ee tn
. Z Bk(x)— and E— Z E,(x)—.
k=0
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Specific evaluations give Bernoulli numbers B, = B,(0) and Euler
numbers E, = 2"E,(1/2).

Theorem (Al-Salam and Carlitz)
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Definition
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Good morning, Karl and Shane,

Adnmittedly, the expression can (or maybe not) be further simpified for the common powers of 1-q, the current
expression looks good. | only have Mathematica code rather than Maple (as DKU does not support a Maple license); so
Iam not sending you the code. At least, the expression holds for n=0,1,ldts, 10

Anyway, the paper Kar sent include the generating function of \beta_m, so probably, we can find its continued fraction
‘expression; or maybe there are some other ways to prove it.

‘This could be a good starting point for some g-analogues.

Have a nice weekend,
Lin
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g-Euler
Definition

The g-Euler numbers were introduced by Carlitz as
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Theorem (S. Chern and L. J.)
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Definition
The linear functional ® on Q(g)[z] is defined by
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where

Theorem (S. Chern and L. J)
®(z2") = €.
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Final Piece

Theorem (S. Chern and L. J)

_ Jeo, n=0;
¢ (Z0,n(2)) = {07 -
Remark
If we define
n,Z (q£+1; q)n
. ( f ] ) =@ =gt q), = O (Fen(2)) = 0forn 2 1.

And the corresponding sequence is
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Binomial Transform

Theorem
Given a sequence ¢ = (¢, c1, - . .) and defined the sequence of
polynomials
K

=3 (e

=
then

Hn(ci) = Ha(ci(x)):

Problem
How about the g-binomial transform? Given a sequence «,,, we now
consider

k

ar(x) = > ql®) [ k ] ot and E(x) ::iq(ﬁ) [ ; ] gt

£=0 q -0 q
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Theorem (S. Chern, L. J., S. Li, and L. Wang)

1. For every n > 0, Hp(ak(x)) is a polynomial in x of degree n(n+ 1) with leading
coefficient

|:Xn(n+1)] Hn (ak(x)) = n+1( 1)( 1) 3("+1) ﬁ[ (1 = q’)

Jj=1

n+1—j

2. For every n > 0, Hy(ax(x)) is a polynomial in x of degree n(n+1)/2 with
leading coefficient

|:Xn(n+1):| H, (ak(x)) — oo - an(—l)(n: ) ( +1) H (1 _ )n+1 =/



The End




