Hankel Determinants and Big q-Jacobi Polynomials for q-Euler Numbers

Lin Jiu

Zu Chongzhi Center, Duke Kunshan University

@The Third Joint SIAM/CAIMS Annual Meetings (AN25) MS164—Hypergeometric Series and Their Applications - Part II

August 1st, 2025

Dr. Shane Chern

Dr. Shane Chern

► The big *q*-Jacobi polynomials

$$\mathscr{J}_{\ell,n}(z) := {}_3\phi_2\left(egin{array}{c} q^{-n},-q^{n+\ell+1},z \ q^{\ell+1},0 \end{array};q,q
ight)$$

Dr. Shane Chern

The big q-Jacobi polynomials

Dr. Shane Chern

The big q-Jacobi polynomials

$$\mathcal{J}_{\ell,n}(z) := {}_{3}\phi_{2}\left(\begin{array}{c} q^{-n}, -q^{n+\ell+1}, z \\ q^{\ell+1}, 0 \end{array}; q, q\right) \\
= \sum_{n>0} \frac{\left(q^{-n}, -q^{n+\ell+1}, z; q\right)_{n}}{\left(q, q^{\ell+1}, 0; q\right)_{n}} q^{n}$$

The q-Euler Numbers:

$$\epsilon_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} rac{1+q}{1+q^{k+1}}.$$

Dr. Shane Chern

The big q-Jacobi polynomials

The q-Euler Numbers:

$$\epsilon_n := \frac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1+q}{1+q^{k+1}}.$$

Hankel determinants

Definition

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Definition

The *n*th *Hankel determinants* of a given sequence $a=(a_0,a_1,\ldots,)$ is the determinant of the *n*th *Hankel matrix*

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers $C_n = \frac{\binom{2n}{n}}{n+1}$.

Definition

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers
$$C_n = \frac{\binom{2n}{n}}{n+1}$$
. $(C_n)_{n=0}^{\infty} = (1, 1, 2, 5, 14, 42, ...)$.

Definition

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers
$$C_n = \frac{\binom{2n}{n}}{n+1}$$
. $(C_n)_{n=0}^{\infty} = (1, 1, 2, 5, 14, 42, ...)$.

$$H_0(C) = 1$$

Definition

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers
$$C_n = \frac{\binom{2n}{n}}{n+1}$$
. $(C_n)_{n=0}^{\infty} = (1, 1, 2, 5, 14, 42, ...)$.

$$\label{eq:h0} \textit{H}_0(\mathsf{C}) = 1, \; \textit{H}_1(\mathsf{C}) = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1,$$

Definition

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers
$$C_n = \frac{\binom{2n}{n}}{n+1}$$
. $(C_n)_{n=0}^{\infty} = (1, 1, 2, 5, 14, 42, ...)$.

$$H_0(C) = 1, H_1(C) = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1, H_2(C) = \det \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 2 & 5 & 14 \end{pmatrix} = 1$$

Definition

The *n*th *Hankel determinants* of a given sequence $a=(a_0,a_1,\ldots,)$ is the determinant of the *n*th *Hankel matrix*

$$H_n(a) = H_n(a_k) = \det \left(egin{array}{cccc} a_0 & a_1 & a_2 & \cdots & a_n \ a_1 & a_2 & a_3 & \cdots & a_{n+1} \ dots & dots & dots & \ddots & dots \ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{array}
ight)$$

Catalan numbers
$$C_n = \frac{\binom{2n}{n}}{n+1}$$
. $(C_n)_{n=0}^{\infty} = (1, 1, 2, 5, 14, 42, ...)$.

$$H_0(C) = 1, H_1(C) = \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1, H_2(C) = \det \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 2 & 5 & 14 \end{pmatrix} = 1$$

Theorem

$$H_n(\mathsf{C}) = 1$$
 for all $n = 0, 1, \ldots$

$$\triangleright c = (c_0, c_1, \ldots, c_n, \ldots)$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- ightharpoonup Orthogonal polynomials P_n , w. r. t. c:

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- ightharpoonup Orthogonal polynomials P_n , w. r. t. c:

$$P_n(y)y^r\Big|_{y^k=c_k}=0, 0 \le r \le n-1.$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

 $P_n(y)y^r\Big|_{y^k=c_r}=0, 0 \le r \le n-1.$

Encyclopedia of Mathematics and its Applications 98

CLASSICAL AND QUANTUM
ORTHOGONAL
POLYNOMIALS IN
ONE VARIABLE

Mourad E.H. Ismail

$$P_{n}(y) = \begin{cases} a_{0} & a_{1} & a_{2} & \cdots & a_{n} \\ a_{1} & a_{2} & a_{3} & \cdots & a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n} & a_{n+1} & \cdots & a_{2n-1} \\ 1 & y & y^{2} & \cdots & y^{n} \end{cases}$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

CLASSICAL AND QUANTUM ORTHOGONAL POLYNOMIALS IN ONE VARIABLE

POURSÉ E H. Ermail

CARRELLE MONTON DE LE LEMAN DE LEMAN D

$$P_n(y)y^r\Big|_{y^k=c_k}=0, 0 \le r \le n-1.$$

$$P_{n}(y) = \begin{pmatrix} a_{0} & a_{1} & a_{2} & \cdots & a_{n} \\ a_{1} & a_{2} & a_{3} & \cdots & a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n} & a_{n+1} & \cdots & a_{2n-1} \\ 1 & y & y^{2} & \cdots & y^{n} \end{pmatrix}$$

$$\frac{1}{H_{n-1}(c)}$$

$$P_{n+1} = (y + s_n)P_n(y) - t_nP_{n-1}(y)$$

$$ightharpoonup$$
 c = $(c_0, c_1, \ldots, c_n, \ldots)$

ightharpoonup Orthogonal polynomials P_n , w. r. t. c:

CLASSICAL AND QUANTUM ORTHOGONAL POLYNOMIALS IN ONE VARIABLE

MOURAGE EH. LIMBI

$$P_n(y)y^r\Big|_{y^k=c_k}=0, 0 \le r \le n-1.$$

$$P_{n+1} = (y + s_n)P_n(y) - t_nP_{n-1}(y) \Rightarrow \begin{cases} \sum_{n=0}^{\infty} c_n z^n = \frac{c_0}{1 + s_0 z - \frac{t_1 z^2}{1 + s_1 z - \frac{t_2 z^2}{1}}} \\ \vdots \\ H_n(c) = c_0^{n+1} t_1^n t_2^{n-1} \cdots t_n \end{cases}$$

Early Work with Karl Dilcher

K. Dilcher and L. Jiu

- Hankel determinants of shifted sequences of Bernoulli and Euler numbers, Contrib. Discrete Math. 18 (2023), 146–175.
- Hankel Determinants of sequences related to Bernoulli and Euler Polynomials, Int. J. Number Theory 18 (2022), 331–359.
- Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials, J. Math. Anal. Appl. 497 (2021), Article 124855.

Early Work with Karl Dilcher

K. Dilcher and L. Jiu

- Hankel determinants of shifted sequences of Bernoulli and Euler numbers, Contrib. Discrete Math. 18 (2023), 146–175.
- Hankel Determinants of sequences related to Bernoulli and Euler Polynomials, Int. J. Number Theory 18 (2022), 331–359.
- Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials, J. Math. Anal. Appl. 497 (2021), Article 124855.

We computed the Hankel determinants of the following sequences:

$$\begin{array}{cccc} B_{2n+1}\left(\frac{x+1}{2}\right) & E_{2k}\left(\frac{x+1}{2}\right) \\ E_{2k+1}\left(\frac{x+1}{2}\right) & E_{2k+2}\left(\frac{x+1}{2}\right) \\ B_k\left(\frac{x+r}{q}\right) \pm B_k\left(\frac{x+s}{q}\right) & kE_{k-1}(x) \\ B_{k,\chi_q} & (q=3,4,6) \\ \frac{B_{k,\chi_{2q,\ell}}}{k+1} & (q=3,4;\ell=1,2) \\ E_k\left(\frac{x+r}{q}\right) \pm E_k\left(\frac{x+s}{q}\right) & (2k+1)E_{2k} \\ (2^{2k+2}-1)B_{2k+2} & (2k+1)B_{2k}(\frac{1}{2}) \\ (2k+3)B_{2k} & (2k+2)E_{2k+1}(1) \end{array}$$

$b_k, k \ge 1$	b_0	Prop.	$b_k, k \ge 1$	b_0	Prop.
B_{k-1}	0	3.1	$E_{k+3}(1)$	$(\frac{-1}{4})$	5.2
B_{2k}	(1)	6.1	$E_{2k-1}(1)$	0	3.3
$(2k+1)B_{2k}$	(1)	6.2	$E_{2k+5}(1)$	$(\frac{1}{2})$	5.1
$(2^{2k}-1)B_{2k}$	(0)	3.4	$E_k(1)/k!$	(1)	3.6
$(2k+1)E_{2k}$	0	3.5	$E_{2k-1}(1)/(2k-1)!$	0	6.3
E_{2k-2}	0	7.3	$E_{2k-2}(\frac{x+1}{2})$	0	7.2
$E_{k-1}(1)$	0	3.2	$E_{k-1}^{(p)}$	$\alpha \in \mathbb{R}$	8.1
Table 2 Summary of results					

Bernoulli and Euler Polynomials

Definition

The Bernoulli polynomials $B_n(x)$ and Euler polynomials $E_n(x)$ are given by their exponential generating functions

$$\frac{te^{xt}}{e^t-1}=\sum_{k=0}^\infty B_k(x)\frac{t^k}{k!}\quad\text{and}\quad \frac{2e^{xt}}{e^t+1}=\sum_{n=0}^\infty E_n(x)\frac{t^n}{n!}.$$

Specific evaluations give Bernoulli numbers $B_n = B_n(0)$ and Euler numbers $E_n = 2^n E_n(1/2)$.

Bernoulli and Euler Polynomials

Definition

The Bernoulli polynomials $B_n(x)$ and Euler polynomials $E_n(x)$ are given by their exponential generating functions

$$\frac{te^{xt}}{e^t-1} = \sum_{k=0}^{\infty} B_k(x) \frac{t^k}{k!} \quad \text{and} \quad \frac{2e^{xt}}{e^t+1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

Specific evaluations give Bernoulli numbers $B_n = B_n(0)$ and Euler numbers $E_n = 2^n E_n(1/2)$.

Theorem (Al-Salam and Carlitz)

$$H_n(B_k) = (-1)^{\binom{n+1}{2}} \prod_{k=1}^n rac{(k!)^6}{(2k)!(2k+1)!} \quad ext{and} \quad H_n(E_k) = (-1)^{\binom{n+1}{2}} \prod_{k=1}^n (k!)^2.$$

q-analog

Definition

The q-Bernoulli numbers were introduced by Carlitz as

$$eta_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k inom{n}{k} rac{k+1}{[k+1]_q},$$

$$[n]_q := (1-q^n)/(1-q).$$

q-analog

Definition

The q-Bernoulli numbers were introduced by Carlitz as

$$eta_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} rac{k+1}{[k+1]_q},$$

$$[n]_q := (1-q^n)/(1-q).$$

Conjecture (L. J)

$$H_n\left(eta_k
ight) = (-1)^{inom{n+1}{2}} q^{rac{(n-1)n(n+1)}{6}} \prod_{k=1}^n [k]_q^{6(n+1-k)} \prod_{k=1}^n [k]_q^{2n+2-k}.$$

q-Bernoulli

	Lin Jiu, Ph.
w	RE: a-Bernou

....

February 18, 2023 at 11:12 PM

Good morning, Karl and Shane,

To: Karl Dilcher, Shane Chern

Admittedly, the expression can (or maybe not) be further simplified for the common powers of 1-q, the current expression looks good. I only have Mathematica code rather than Maple (as DIX does not support a Maple license); so I am not sending you the code. At least, the expression holds for n=0,1 yidots, 10.

Arryway, the paper Karl sent include the generating function of 'beta_m, so probably, we can find its continued fraction expression; or maybe there are some other ways to prove it.

This could be a good starting point for some q-analogues.

Have a nice weekend,

See More from Karl Dilcher

THE STARTING POINT

Casin [1, 2] parameted the Bennedia Samuhon is the sequence
$$A_n$$
 by the necessary.
$$\sum_{k=0}^{n} \left(b_k^{(k)} b_k^{k+1} - b_n - \left[b_k^{(k)} - n - 1, n - 1$$

q-Bernoulli

	Lin Jiu, Ph.D.
- 6	RF: n-Remoulfi

February 18, 2023 at 11:12 PM

To: Karl Dilcher, Shane Chern

Good morning, Karl and Shane,

Admittedly, the expression can (or maybe not) be further simplified for the common powers of 1-q, the current expression looks good. I only have Mathematica code rather than Maple (as DKU does not support a Maple license); so I am not sending you the code. At least, the expression holds for real. 7 Mods 10.

Arryway, the paper Karl sent include the generating function of 'beta_m, so probably, we can find its continued fraction expression; or maybe there are some other ways to prove it.

This could be a good starting point for some q-analogues.

Have a nice weekend,

See More from Karl Dilcher

THE STARTING POINT

L. This Coutzer 3
$$\sum_{n=0}^\infty (h_n^2) h_n^2 dx^{n-1} - h_n = \begin{pmatrix} 1 & n-1 \\ n & n \end{pmatrix}.$$
 Ordize $[1, 2]$ generated the BencalLinearins to the expense β_n by the reconstruction
$$\sum_{n=0}^\infty h_n^2 h_n^2 dx^{n-1} - h_n = \begin{pmatrix} 1 & n-1 \\ n & n \end{pmatrix}.$$
 Definition 1. The predicts is defined by
$$\|\beta_n\|_{\infty}^{n-1} - \|\beta_n\|_{\infty}^{n-1} = \|\beta_n\|_{\infty}^{n-1} + \|\beta_n\|_{\infty}^{n-1} = \|\beta_n\|_{\infty}^{n-1} + \|\beta_n\|_$$

Conjecture 2.

$$\begin{split} [k]_{q^{l}} &:= [k]_{q}[k-1]_{q} \cdots [1]_{q}, \\ \\ &H_{q}(\beta_{k}) = (-1)^{\binom{n-2}{2}} q^{\frac{(n-1)(n+1)}{2}} \prod_{k=1 \atop 2n+1}^{n} [k]_{q}^{\binom{n}{2}(n+1-1)} \end{split}$$

Theorem (F. Chapton and J. Zeng, 2017)

$$H_n(\beta_k)$$

$$= (-1)^{\binom{n+1}{2}} q^{\frac{(n-1)n(n+1)}{6}} \prod_{\substack{k=1 \\ k=1}}^{n} [k]_q^{\mathbf{6}(n+1-k)}$$

F. Chapoton and J. Zeng, "Nombres de q-Bernoulli-Carlitzet fractions continues", J. Théor. Nombres Bordeaux 29 (2017), no. 2, pp. 347-368.

q-Euler

Definition

The q-Euler numbers were introduced by Carlitz as

$$\epsilon_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} rac{1+q}{1+q^{k+1}}.$$

q-Euler

Definition

The q-Euler numbers were introduced by Carlitz as

$$\epsilon_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} rac{1+q}{1+q^{k+1}}. \quad \lim_{q o 1} \epsilon_n = E_n(0)$$

q-Euler

Definition

The q-Euler numbers were introduced by Carlitz as

$$\epsilon_n := rac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} rac{1+q}{1+q^{k+1}}, \quad \lim_{q o 1} \epsilon_n = E_n(0)$$

Theorem (S. Chern and L. J.)

$$\begin{split} \det_{0 \leq i,j \leq n} \left(\epsilon_{i+j} \right) &= \frac{\left(-1 \right)^{\binom{n+1}{2}} q^{\frac{1}{4} \binom{2n+3}{3}}}{(1-q)^{n(n+1)}} \prod_{k=1}^{n} \frac{\left(q^2,q^2;q^2 \right)_k}{\left(-q,-q^2,-q^2,-q^3;q^2 \right)_k} \\ \det_{0 \leq i,j \leq n} \left(\epsilon_{i+j+1} \right) &= \frac{\left(-1 \right)^{\binom{n+2}{2}} q^{\frac{1}{4} \binom{2n+4}{3}}}{(1-q)^{n(n+1)} \left(1+q^2 \right)^{n+1}} \prod_{k=1}^{n} \frac{\left(q^2,q^4;q^2 \right)_k}{\left(-q^2,-q^3,-q^3,-q^4;q^2 \right)_k} \\ \det_{0 \leq i,j \leq n} \left(\epsilon_{i+j+2} \right) &= \frac{\left(-1 \right)_2^{(n+2)} q^{\frac{1}{4} \binom{2n+4}{3}} (1+q)^n \left(1-(-1)^n q^{(n+2)^2} \right)}{(1-q)^{n(n+1)} \left(1+q^2 \right)^{2(n+1)} \left(1+q^3 \right)^{n+1}} \\ &\times \prod_{k=1}^{n} \frac{\left(q^4,q^4;q^2 \right)_k}{\left(-q^3,-q^4,-q^4,-q^5;q^2 \right)_k} \end{split}$$

Big *q*-Jacobi Polynomial

Big *q*-Jacobi Polynomial

Definition

The q-hypergeometric series $_{r+1}\phi_r$ is defined as

$$_{r+1}\phi_r\left(egin{aligned} a_1,\ldots,a_{r+1}\ b_1,\ldots,b_r\ ; \ q; \ z \end{aligned}
ight):=\sum_{n\geq 0}rac{\left(a_1,a_2,\ldots,a_{r+1}; \ q
ight)_n \ z^n}{\left(q,b_1,b_2,\ldots,b_r; \ q
ight)_n},$$

Big q-Jacobi Polynomial

Definition

The q-hypergeometric series $_{r+1}\phi_r$ is defined as

$$_{r+1}\phi_r\left(egin{aligned} a_1,\ldots,a_{r+1}\ b_1,\ldots,b_r\ ; \ q; \ z \end{aligned}
ight):=\sum_{n\geq 0}rac{\left(a_1,a_2,\ldots,a_{r+1}; \ q
ight)_n \ z^n}{\left(q,b_1,b_2,\ldots,b_r; \ q
ight)_n},$$

where

$$(A;q)_n := \prod_{k=1}^n (1 - Aq^{k-1}), \quad (A_1, A_2, \dots, A_n, q) := \prod_{j=1}^n (A_j; q)_n$$

Big q-Jacobi Polynomial

Definition

The q-hypergeometric series $_{r+1}\phi_r$ is defined as

$$_{r+1}\phi_r\left(egin{aligned} a_1,\ldots,a_{r+1}\ b_1,\ldots,b_r\ \end{aligned};q;z
ight):=\sum_{n>0}rac{\left(a_1,a_2,\ldots,a_{r+1};q\right)_nz^n}{\left(q,b_1,b_2,\ldots,b_r;q\right)_n},$$

where

$$(A;q)_n := \prod_{k=1}^n (1-Aq^{k-1}), \quad (A_1,A_2,\ldots,A_n,q) := \prod_{j=1}^n (A_j;q)_n$$

$$\mathscr{J}_{\ell,n}(z) := {}_{3}\phi_{2}\left(\begin{array}{c}q^{-n}, -q^{n+\ell+1}, z\\q^{\ell+1}, 0\end{array}; q, q\right) = \sum_{n \geq 0} \frac{\left(q^{-n}, -q^{n+\ell+1}, z; q\right)_{n}}{\left(q, q^{\ell+1}, 0; q\right)_{n}} q^{n}$$

Linear Functional

Linear Functional

Definition

The linear functional Φ on $\mathbb{Q}(q)[z]$ is defined by

$$\Phi\left(\begin{bmatrix} m,z\\n\end{bmatrix}_q\right) = \frac{(-1)^{n-m}q^{n-m}}{(-q^2;q)_n},$$

where

$$\left[egin{array}{c} m,z \ n \end{array}
ight]_q:=rac{1}{[n]_q!}\prod_{k=m-q+1}^m\left([k]_q+q^kz
ight).$$

Linear Functional

Definition

The linear functional Φ on $\mathbb{Q}(q)[z]$ is defined by

$$\Phi\left(\begin{bmatrix} m,z\\n\end{bmatrix}_q\right) = \frac{(-1)^{n-m}q^{n-m}}{(-q^2;q)_n},$$

where

$$\left[egin{array}{c} m,z \ n \end{array}
ight]_q:=rac{1}{[n]_q!}\prod_{k=m-n+1}^m\left([k]_q+q^kz
ight).$$

Theorem (S. Chern and L. J)

$$\Phi(z^n)=\epsilon_n.$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

$$\left. P_n(y)y^r \right|_{v^k=c_k} = 0, 0 \le r \le n-1.$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

$$\left. P_n(y)y^r \right|_{y^k=c_k} = 0, 0 \le r \le n-1.$$

If we define (or can find) a linear functional L such that $L(y^n) = c_n$, the orthogonal polynomial sequence $(P_n(y))_{n=0}^{\infty}$ is orthogonal w. r. t. L.

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

$$\left. P_n(y)y^r \right|_{y^k=c_k} = 0, 0 \le r \le n-1.$$

If we define (or can find) a linear functional L such that $L(y^n) = c_n$, the orthogonal polynomial sequence $(P_n(y))_{n=0}^{\infty}$ is orthogonal w. r. t. L. For $n \neq m$,

$$L(P_n(y)P_m(y)) = 0.$$

- ightharpoonup c = $(c_0, c_1, \ldots, c_n, \ldots)$
- \triangleright Orthogonal polynomials P_n , w. r. t. c:

$$\left. P_n(y)y^r \right|_{y^k=c_k} = 0, 0 \le r \le n-1.$$

If we define (or can find) a linear functional L such that $L(y^n) = c_n$, the orthogonal polynomial sequence $(P_n(y))_{n=0}^{\infty}$ is orthogonal w. r. t. L. For $n \neq m$,

$$L(P_n(y)P_m(y)) = 0.$$

$$L \sim \bigg|_{v^k = c_k}$$

► Sequence
$$\epsilon_n = \frac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1+q}{1+q^{k+1}}$$

- Linear Functional $\Phi(z^n) = \epsilon_n$
- lacksquare Big q-Jacobi polynomial $\mathscr{J}_{\ell,n}(z):={}_3\phi_2\left(egin{array}{c} q^{-n},-q^{n+\ell+1},z \ q^{\ell+1},0 \end{array};q,q
 ight)$

► Sequence
$$\epsilon_n = \frac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1+q}{1+q^{k+1}}$$

Linear Functional $Φ(z^n) = ε_n$

▶ Big q-Jacobi polynomial $\mathscr{J}_{\ell,n}(z):={}_3\phi_2\left(egin{array}{c} q^{-n},-q^{n+\ell+1},z\\ q^{\ell+1},0 \end{array};q,q
ight)$ with recurrence

$$A_{\ell,n} \mathcal{J}_{\ell,n+1}(z) = (A_{\ell,n} + B_{\ell,n} - 1 + z) \mathcal{J}_{\ell,n}(z) - B_{\ell,n} \mathcal{J}_{\ell,n-1}(z),$$

where

$$egin{aligned} A_{\ell,n} &= rac{1 - q^{2n+2\ell+2}}{\left(1 + q^{2n+\ell+1}
ight)\left(1 + q^{2n+\ell+2}
ight)} \ B_{\ell,n} &= -rac{q^{2n+2\ell+1}\left(1 - q^{2n}
ight)}{\left(1 + q^{2n+\ell}
ight)\left(1 + q^{2n+\ell+1}
ight)} \end{aligned}$$

► Sequence
$$\epsilon_n = \frac{1}{(1-q)^n} \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1+q}{1+q^{k+1}}$$

Linear Functional $Φ(z^n) = \epsilon_n$

▶ Big q-Jacobi polynomial $\mathscr{J}_{\ell,n}(z):={}_3\phi_2\left(egin{array}{c} q^{-n},-q^{n+\ell+1},z\\ q^{\ell+1},0 \end{array};q,q
ight)$ with recurrence

$$A_{\ell,n} \mathcal{J}_{\ell,n+1}(z) = (A_{\ell,n} + B_{\ell,n} - 1 + z) \mathcal{J}_{\ell,n}(z) - B_{\ell,n} \mathcal{J}_{\ell,n-1}(z),$$

where

$$A_{\ell,n} = rac{1 - q^{2n+2\ell+2}}{\left(1 + q^{2n+\ell+1}
ight)\left(1 + q^{2n+\ell+2}
ight)} \ B_{\ell,n} = -rac{q^{2n+2\ell+1}\left(1 - q^{2n}
ight)}{\left(1 + q^{2n+\ell}
ight)\left(1 + q^{2n+\ell+1}
ight)} \ \mathscr{P}_{\ell,n}(z) = rac{(-1)^n}{q^n(1-q)^n} \widetilde{\mathscr{J}}_{\ell,n}\left(\left(q^2 - q
ight)z + q
ight)$$

with

$$\widetilde{\mathscr{J}_{\ell,n}}(z):=rac{\left(q^{\ell+1};q
ight)_n}{\left(-q^{n+\ell+1};q
ight)_n}\mathscr{J}_{\ell,n}(z).$$

Theorem (S. Chern and L. J)

$$\Phi\left(\mathscr{P}_{0,n}(z)
ight) = egin{cases} \epsilon_0, & n=0; \ 0, & n\geq 1. \end{cases}$$

Theorem (S. Chern and L. J)

$$\Phi\left(\mathscr{P}_{0,n}(z)\right) = egin{cases} \epsilon_0, & n=0; \ 0, & n\geq 1. \end{cases}$$

Remark

If we define

$$\Theta_{\ell}\left(\begin{bmatrix} n,z\\n\end{bmatrix}_{q}\right):=rac{\left(q^{\ell+1};q
ight)_{n}}{\left(q,-q^{\ell+2};q
ight)_{n}}$$

Theorem (S. Chern and L. J)

$$\Phi\left(\mathscr{P}_{0,n}(z)\right) = egin{cases} \epsilon_0, & n=0; \ 0, & n\geq 1. \end{cases}$$

Remark

If we define

$$\Theta_{\ell}\left(egin{bmatrix} n,z \\ n \end{bmatrix}_q
ight):=rac{\left(q^{\ell+1};q
ight)_n}{\left(q,-q^{\ell+2};q
ight)_n}\Rightarrow\Theta_{\ell}\left(\mathscr{P}_{\ell,n}(z)
ight)=0 ext{ for } n\geq 1.$$

Theorem (S. Chern and L. J)

$$\Phi\left(\mathscr{P}_{0,n}(z)\right) = egin{cases} \epsilon_0, & n=0; \ 0, & n\geq 1. \end{cases}$$

Remark

If we define

$$\Theta_{\ell}\left(\left[egin{aligned} n,z \\ n \end{aligned}
ight]_{q}
ight) := rac{\left(q^{\ell+1};q
ight)_{n}}{\left(q,-q^{\ell+2};q
ight)_{n}} \Rightarrow \Theta_{\ell}\left(\mathscr{P}_{\ell,n}(z)
ight) = 0 ext{ for } n\geq 1.$$

And the corresponding sequence is

$$\xi_{\ell,n} := rac{q^{(\ell+1)n}(-q;q)_n}{(-q^{\ell+2};q)_n}.$$

The End

The End

Binomial Transform

Theorem

Given a sequence $c=(c_0,c_1,\ldots)$ and defined the sequence of polynomials

$$c_k(x) := \sum_{\ell=0}^k \binom{k}{\ell} c_\ell x^{k-\ell},$$

then

$$H_n(c_k) = H_n(c_k(x)).$$

Binomial Transform

Theorem

Given a sequence $c=(c_0,c_1,\dots)$ and defined the sequence of polynomials

$$c_k(x) := \sum_{\ell=0}^k \binom{k}{\ell} c_\ell x^{k-\ell},$$

then

$$H_n(c_k) = H_n(c_k(x)).$$

Problem

How about the q-binomial transform?

Binomial Transform

Theorem

Given a sequence $c=(c_0,c_1,\dots)$ and defined the sequence of polynomials

$$c_k(x) := \sum_{\ell=0}^k \binom{k}{\ell} c_\ell x^{k-\ell},$$

then

$$H_n(c_k) = H_n(c_k(x)).$$

Problem

How about the q-binomial transform? Given a sequence α_n , we now consider

$$\alpha_k(x) := \sum_{\ell=0}^k q^{\binom{\ell}{2}} \left[\begin{array}{c} k \\ \ell \end{array} \right]_q \alpha_{k-\ell} x^\ell \quad \text{and} \quad \widetilde{\alpha}_k(x) := \sum_{\ell=0}^k q^{\binom{\ell}{2}} \left[\begin{array}{c} k \\ \ell \end{array} \right]_q \alpha_\ell x^{k-\ell}$$

$$\alpha_k(x) := \sum_{\ell=0}^k q^{\binom{\ell}{2}} \left[\begin{array}{c} k \\ \ell \end{array} \right]_q \alpha_{k-\ell} x^\ell \quad \text{and} \quad \widetilde{\alpha}_k(x) := \sum_{\ell=0}^k q^{\binom{\ell}{2}} \left[\begin{array}{c} k \\ \ell \end{array} \right]_q \alpha_\ell x^{k-\ell}$$

Theorem (S. Chern, L. J., S. Li, and L. Wang)

1. For every $n \ge 0$, $H_n(\alpha_k(x))$ is a polynomial in x of degree n(n+1) with leading coefficient

$$\left[x^{n(n+1)}\right]H_n(\alpha_k(x)) = \alpha_0^{n+1}(-1)^{\binom{n+1}{2}}q^{3\binom{n+1}{3}}\prod_{i=1}^n\left(1-q^i\right)^{n+1-j}.$$

2. For every $n \ge 0$, $H_n(\tilde{\alpha}_k(x))$ is a polynomial in x of degree n(n+1)/2 with leading coefficient

$$\left[x^{\frac{n(n+1)}{2}}\right]H_n\left(\widetilde{\alpha}_k(x)\right) = \alpha_0\alpha_1\cdots\alpha_n(-1)^{\binom{n+1}{2}}q^{2\left(\frac{n+1}{3}\right)}\prod_{i=1}^n\left(1-q^i\right)^{n+1-j}.$$

The End

